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Our response to the sensation of our phone ringing will be 
very different in the context of having just heard ‘the play 
is beginning; please silence all phones’ versus a context in 

which we have just been told ‘your child’s school is about to call 
with urgent information’. Such top-down flexible switching in sen-
sorimotor routing is central to our daily lives and is a core compo-
nent of executive function1. One prominent paradigm to investigate 
executive function in the laboratory is the Pro/Anti task-switching 
behavior2. In this paradigm, subjects switch between two senso-
rimotor mappings: the ‘Pro’ task requires subjects to orient toward 
a peripheral target for reward, whereas the ‘Anti’ task requires sub-
jects to orient away from a peripheral target. In humans, monkeys 
and rats, subjects display behavioral asymmetries between Pro 
and Anti responses: performance on Anti trials is slower and less 
accurate; and switching from Anti to Pro leads to a greater perfor-
mance cost than switching from Pro to Anti3–5. These behavioral 
asymmetries suggest that the Pro task is more reflexive, whereas 
the Anti task is more cognitively demanding and requires response 
inhibition5. Selective impairment on the Anti task but not on the 
Pro task has been associated with failures of executive functions 
in patients with various psychiatric disorders6,7. These failures can 
be attributed either to an inability to inhibit the automatic and 
reflexive Pro responses (response inhibition) or to an inability to 
remap sensory input to the appropriate volitional motor response  
(vector inversion)5,8.

Neural mechanisms underlying the Pro/Anti task-switching 
behavior have been extensively investigated in non-human pri-
mates5,9. A prevailing hypothesis has been that response inhibition 
is, in part, achieved by prefrontal cortical (PFC) inhibition of the 
SC5, with the latter considered to be largely a spatiomotor struc-
ture10–15. This hypothesis would predict that silencing PFC would 
disinhibit collicular activity. However, silencing primate PFC was 
found to, instead, reduce activity in the SC16. Moreover, in a recently 
developed Pro/Anti orienting behavior in rats, pharmacological 
inactivation of the SC led to selective impairment of the cognitively 
demanding Anti task while sparing the Pro task3. These data suggest 

a more cognitive role for the SC in executive function than previ-
ously appreciated—a proposal that aligns with recent studies that 
put forth more integrative roles of the SC in target selection, spatial 
attention and decision-making17–22. If the SC plays a cognitive role in 
the Pro/Anti behavior, what specific role is this? Is the SC involved 
in the computation that combines context information with sensory 
information to produce appropriate choices? Or is the SC simply 
a part of the motor output pathway but specifically during Anti 
trials? And what circuit mechanisms underlie the SC’s role in the 
behavior? It is notable that executive control behaviors have several 
distinct task epochs, requiring distinct computations. Nevertheless, 
no neural perturbations with sub-trial temporal resolution have yet 
been reported during executive control. This has made it difficult 
to causally link brain regions to specific computational roles in  
the behavior.

In this study, using a rat Pro/Anti behavior, we employed 
sub-trial optogenetic perturbations, electrophysiological recordings 
and computational modeling of SC circuits to address these ques-
tions. We identified a key subset of SC neurons, distinguished by 
their response timing and their relationship to behavior, that link 
context representation to choice representation. These neurons 
appear to lead the computation that combines task context with 
the sensory stimulus to produce the subject’s choices. Temporally 
specific SC inactivations demonstrated that SC activity during the 
context-encoding period is causally required for behavior. We were 
surprised to find that behavior is much more robust to SC inactiva-
tions during the choice formation period. However, models of SC 
neural dynamics built with a structure based on our electrophysi-
ological findings, and trained to reproduce our optogenetic data, 
show that this is, nonetheless, consistent with choice computation 
occurring in, and being led by, the SC. Large-scale computational 
searches of these SC circuit models revealed which features of 
within-SC connectivity are necessary to replicate our experimen-
tal data and also identified some a priori expected features that 
turned out to be irrelevant. Taken together, our data and models 
identify key circuit mechanisms underlying response inhibition and 
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context-based vector inversion that support a leading role for the SC 
during executive control.

Results
We trained rats to perform task switching in a behavior in which 
two different task contexts require opposite sensorimotor orienting 
responses3 (Fig. 1a). On each trial, rats are first presented with a 
non-spatial auditory cue indicating the task context for the current 
trial (labeled ‘Pro’ or ‘Anti’). This is followed by a silent delay period 
and then by a spatial choice period during which a visual stimulus 
to one side is turned on; in the Pro context, rats are required to ori-
ent toward it, whereas, in the Anti context, they should orient away 
(Fig. 1b). We used easily distinguishable Pro and Anti cue stimuli. 
Our focus here was not on the animal’s decision as to which of the 
Pro versus Anti context it is in. Instead, our focus was on how that 
non-spatial context information, held in memory, is combined with 
the spatial cue information provided by the side light. It is only after 
that side light is presented that the subject’s spatial choice can begin 
to be formed. We refer to the period between side light onset and 
the animal’s choice as the ‘choice period’. This includes both the cog-
nitive process of combining context and sensory cue information 
to form a choice and the potentially overlapping response process 
of implementing that choice. Similarly to previous results3,5, rats 
displayed multiple behavioral asymmetries between Pro and Anti 
responses (Extended Data Fig. 1). These asymmetries indicate the 
Pro task as a stimulus-driven task, whereas the Anti task is more 
cognitively demanding.

In the electrophysiological and optogenetic experiments, the 
Pro/Anti task contexts were presented in blocks of trials, with con-
text being cued on each trial, remaining constant within a block 
and alternating between blocks. We varied the block duration 
(mean ± s.d. = 24.3 ± 9.0 trials) so that rats could not predict when 
the task context switched. As observed previously3, the change in 
performance on the first trial of each block implied that rats were 
monitoring each trial’s task context cue (Extended Data Fig. 1d). 
Within-block trials were far more common in our dataset than 
context-switching trials, and we focus exclusively on within-block 
trials below.

SC and PFC populations encode task context and motor choice. 
To investigate neural representations in collicular and frontal corti-
cal regions previously implicated in task switching3,23, we recorded 
single units in the deep layers of the SC and in the prelimbic region 
of the medial PFC (Extended Data Fig. 2a, Supplementary Fig. 1 
and Methods). We analyzed neurons for which we had collected 
responses during at least 25 correct trials for each of the four 
task conditions (Pro-Go-Right, Pro-Go-Left, Anti-Go-Right and 
Anti-Go-Left). This resulted in the analysis of 193 SC neurons (out 
of 215; Fig. 1) and 291 PFC neurons (out of 331; Extended Data  
Fig. 3). Unless otherwise noted, all analyses were performed on cor-
rect trials, and trial numbers were balanced across four conditions 
(25 trials per condition).

Individual neurons in SC and PFC encoded task context (Pro 
or Anti) as well as the subsequent spatial choice (Left or Right; Fig. 
1c–e, Extended Data Fig. 3 and Supplementary Fig. 2). We quanti-
fied each neuron’s selectivity by computing d′, a measure of the sep-
aration between two response distributions, at each time point for 
the two task contexts and, separately, for the two choices (Methods 
and Supplementary Fig. 3). In both SC and PFC, we observed neu-
rons that preferred Pro or Anti task trials (Fig. 1c, Extended Data 
Fig. 3a and Methods) and neurons that were selective for orienting 
responses ipsilateral (ipsi) or contralateral (contra) to the recorded 
side10,24 (Fig. 1e and Extended Data Fig. 3c). Consistent with pre-
vious studies10, many SC neurons were side selective until entry 
into the response side port, suggesting a role in motor execution 
(Supplementary Fig. 4). These features are preserved in neurons 

recorded from individual rats (Extended Data Fig. 4). Also consis-
tent with previous findings in rodent SC10, no statistically significant 
difference was found between the number of ipsi-preferring and 
contra-preferring neurons (in SC, 40%, 77/193 contra-preferring 
and 35%, 68/193 ipsi-preferring; P = 0.34, chi-squared test).

In contrast to past studies of the SC using delayed response 
tasks22,25,26, the encoding of Pro/Anti task context here is dissoci-
ated from motor planning, as supported by a lack of side-selective 
activity before the choice period (Fig. 1e). Therefore, the Pro/Anti 
selectivity observed during the task context cue and delay period 
could not be attributed to a lateralized or visually related encoding 
strategy. Analysis of the animals’ head orientation angles did not 
reveal a significant difference between Pro and Anti trials during 
the delay period, suggesting that rats did not use an overt embod-
ied strategy to encode context (Supplementary Fig. 5 and Methods). 
Nevertheless, we do not rule out that rats could have encoded task 
context using unobserved muscle activation.

Recordings in primate SC neurons have reported higher activity 
associated with visually guided responses compared to non-visually 
guided responses27. We compared population-averaged firing 
rates on Pro (visually guided) versus Anti (non-visually guided) 
trials during this choice period (0–250 ms after light onset) and 
found no significant difference between average firing rates on 
Pro (18.11 ± 0.03 Hz) versus Anti (17.84 ± 0.03 Hz) trials in the SC 
population (n = 193; P = 0.10). Therefore, even during the choice 
period, Pro versus Anti firing rate differences were not the result 
of an overall difference between visually guided versus non-visually 
guided responses. Finally, the Pro/Anti selectivity observed in indi-
vidual SC neurons during the choice period did not simply reflect 
a motor execution signal: Pro/Anti d′ values persisted even when 
ipsilateral and contralateral orienting trials were analyzed separately 
(Supplementary Fig. 6a).

Similarly to observations in prefrontal cortical regions during 
cognitive tasks23,28,29 (Extended Data Fig. 3), the encoding in SC 
appeared to be multiplexed and highly heterogeneous across dif-
ferent neurons26,27 (Fig. 1c–e). An initial inspection of the entire SC 
population revealed no apparent correlation between task context 
and choice preference (Extended Data Fig. 5a) or clear temporal 
order of Pro versus Anti task context selectivity. Given the hetero-
geneous and multiplexed nature of single-neuron responses (Fig. 2a 
and Supplementary Fig. 7a), we focused on the representation of 
task variables at the population level (Fig. 2).

To evaluate the amount of task context information in SC 
and PFC populations, we used a cross-validated linear decod-
ing approach to classify Pro versus Anti responses or Left ver-
sus Right responses in neural population space30 (Methods). We 
included all the neurons for this analysis (193 SC neurons and 291 
PFC neurons) but matched the number of neurons from different 
brain areas (n = 193; Methods). Similarly to task context informa-
tion in the PFC population (Supplementary Fig. 7b), decoding for 
whether a trial was Pro or Anti was significantly above chance in 
the SC population throughout the trial duration (Fig. 2b), even 
when analyzed separately for ipsilateral versus contralateral choices 
(Supplementary Fig. 6b). After the onset of side light stimulus, Left 
versus Right choice information emerged in SC with short latency 
(Fig. 2c; latency = 49 ± 18 ms), significantly earlier than that in 
PFC (latency difference = 186 ± 24 ms; P = 10−3, non-parametric 
permutation test). This choice information latency difference is 
not a result of differences between the two populations in firing 
rate, overall strength of d′ or number of neurons (Supplementary  
Fig. 8). We also recorded neurons in the rat frontal orienting fields 
(FOF) (n = 429 neurons) from a slightly different version of the 
Pro/Anti task (Methods) and found that the appearance of choice 
information in SC was also significantly earlier than that in FOF 
(Fig. 2c; latency difference = 222 ± 29 ms; P = 10−3, permutation 
test). Although we cannot rule out that other cortical regions might 
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encode spatial choice even faster than the SC, these results suggest 
that the SC might play a leading role in forming the spatial decision. 
Compared to the strong and early information in the SC deep lay-
ers about the animal’s upcoming orienting choice, sensory informa-
tion regarding which side the light stimulus was on was significantly 
weaker (P = 10−3, t-test) and appeared significantly later (latency 
difference = 191 ± 33 ms; P = 10−3, permutation test; Extended Data 

Fig. 6), a result consistent with the role of SC deep layers in motor 
processes11,17.

A subset of SC task-encoding neurons are linked to decisions. 
A closer examination of SC neurons revealed subpopulations that 
encode distinct types of information (Fig. 3). For each SC neu-
ron, we computed the temporal profile of significant task context 
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Fig. 1 | Individual SC neurons encode task and choice variables during flexible sensorimotor routing. a, Rules for the Pro and Anti task contexts. In the 
Pro task, rats should orient toward a lateralized stimulus (left or right) for reward; in the Anti task, rats should orient away from the stimulus for reward. 
Trained rats can switch between these two known task contexts. b, Rats nose-poke in the center port to initiate each trial and keep fixation during a 1-s 
task cue (Pro or Anti sound) and a 0.5-s delay period. After the delay ends, the animal is allowed to withdraw from the center port (mean time between 
delay end and animal’s withdrawal!=!127!ms). The withdrawal triggers the onset of a lateralized LED light (left or right) to indicate the stimulus location. 
Rats then poke into one of the side-pokes for reward. Trials are aligned to light stimulus onset (time 0), and the vertical lines and horizontal error bars 
indicate the mean and the 20th and 80th percentiles of task cue onset and delay onset times (Methods; the variability is introduced by the animal’s 
variable time between delay end and center port withdrawal; for analysis aligned to side response, see Supplementary Fig. 4). These variable time 
indicators on task cue and delay onset apply to all subsequent plots but are omitted from them for simplicity. c, Matrix of Pro/Anti selectivity for the SC 
population (193 of 215 total neurons). Each row of the matrix represents the Pro/Anti signed d′ of a single neuron as a function of time. Neurons are sorted 
by the timing of their peak Pro/Anti absolute d′. Only correct trials were included in this analysis. d′ values that are not significant (NS) have their color 
code set to 0 (black). For c–e, analysis is on sliding windows of width!=!250!ms, placed such that each window includes spikes from −250 to 0!ms relative 
to the plotted time point. d, Peri-stimulus time histogram (PSTH) for three example SC neurons on Pro-Go-Contra (green solid), Pro-Go-Ipsi (green 
dashed), Anti-Go-Contra (red solid) and Anti-Go-Ipsi (red dashed) trials (mean ± s.e.m.). PSTHs are aligned to stimulus onset. Top: Pro/Anti signed d′ 
and Go Ipsi/Contra signed d′ as a function of time for each neuron. d′ values that are NS have their color code set to 0 (black); two-sided t-tests, threshold 
P!=!0.05. None of these representative examples had statistically significant linearly decodable information about which side the light stimulus was on: the 
maximum d′ values for light side information for the three neurons, from top to bottom, were 0.19 (P!=!0.56), 0.26 (P!=!0.28) and 0.13 (P!=!0.79). e, Matrix 
of choice (Go Ipsi/Go Contra) selectivity for the SC population. The recorded hemisphere was randomly assigned for each rat. We, therefore, quantified 
choice selectivity as preference for orienting responses ipsilateral or contralateral to the recorded side. Neurons are sorted as in c. Fir, firing.
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selectivity (Pro versus Anti) and ranked neurons by the time of 
their peak selectivity (Fig. 3a). Although there is a continuum of 
selectivity timings (Supplementary Fig. 9), for analysis purposes 
we divided the SC neurons into two broad subpopulations accord-
ing to when they encoded Pro/Anti information. One group of SC 
neurons (‘cue neurons’, cyan) differentiated between Pro and Anti 
trials most strongly during the auditory cue, whereas another sub-
population represented task context most strongly when the audi-
tory cue was no longer present (‘delay/choice neurons’, yellow). 
The representation of task context by cue neurons was progres-
sively weakened after the end of the cue, and it did not differenti-
ate between correct and error trials (Fig. 3b, top), consistent with 
these neurons carrying a purely sensory signal with little relation-
ship to behavior.

In contrast, three lines of evidence suggest that the SC delay/
choice neurons (which have both Pro versus Anti and contra versus 
ipsi preferences) play a key role in behavior. First, their task con-
text information slowly ramped up throughout the cue presenta-
tion and the delay, peaking at the time when rats were required to 
make a decision (Fig. 3b, bottom, solid line). Second, this represen-
tation was significantly disrupted on error trials during the delay 
and choice periods (Fig. 3b, bottom, dashed line; P = 10−3, t-test), 
indicating a strong correlation with behavior. Third, when decoded 
for contra versus ipsi choices, these neurons contained an early 
representation of choice, substantially and significantly faster than 
the SC cue neurons or the PFC or FOF neurons (Fig. 3c; SC delay/
choice neurons = 84 ± 19 ms; SC cue neurons = 196 ± 38 ms; PFC 
neurons = 290 ± 34 ms, P = 10−3, permutation test; FOF neurons 
(not shown in Fig. 3c for plot clarity) = 342 ± 39 ms, P = 10−3, per-
mutation test; n = 29 neurons in each of the four groups; also see 
Supplementary Fig. 10).

In our behavior, it is immediately after the visual target onset 
that animals apply the non-spatial task context (Pro or Anti) to 
form their spatial orienting choice (ipsilateral or contralateral to 
the recorded side). We, therefore, focused on a time window imme-
diately after visual target onset, and on the delay/choice neurons, 
to examine how task context and choice signals were multiplexed  
(Fig. 4). In contrast to the heterogeneity initially observed in the 
entire SC population (Fig. 1c–e), this focus revealed a systematic 
relationship between each neuron’s task context selectivity and 
choice selectivity (Fig. 4 and Extended Data Fig. 5b). SC delay/
choice neurons that were significantly Contra-preferring during 
this time window (that is, neurons having a P value < 0.05, t-test; 
Methods) tended to also be Pro-preferring (Fig. 4a), whereas SC 
delay/choice neurons that were significantly Ipsi-preferring tended 
to also be Anti-preferring (Fig. 4c). Although there was a con-
tinuum of selectivity (Fig. 4b), we refer to the two predominant 
types at the ends of the spectrum as Pro/Contra-preferring neu-
rons and Anti/Ipsi-preferring neurons. The predominance of Pro/
Contra-preferring neurons and Anti/Ipsi-preferring neurons was 
not simply due to higher firing rate responses for visual stimuli 
from the contralateral side. Such a preference would have implied 
that individual neurons would have higher firing rates on both Pro/
Contra and Anti/Ipsi trials. Instead, individual neurons were either 
Pro/Contra-preferring or Anti/Ipsi-preferring and had a complex, 
non-linear interaction between task context information and target 
location (see the Anti/Ipsi-preferring example in Fig. 1d, bottom, 
and the weak and late light stimulus information in the SC popula-
tion in Extended Data Fig. 6).

SC activity is necessary during the non-spatial task-encoding 
delay period. Because different behavioral epochs of the task 
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performance is plotted over the right edge of the window (causal). c, Classification performance to linearly separate Go-Left versus Go-Right trials for equally 
sized SC (dashed), PFC (solid) and FOF (dotted) population (n!=!193 neurons). Shaded area indicates the median ± s.d. of animals’ RT (800.5!±!362.9!ms). 
Horizontal cyan error bars represent mean ± s.d. of the timing of reaching 0.7 decoding accuracy for each population. RGB, red, green, blue.

NATURE NEUROSCIENCE | VOL 24 | AUGUST 2021 | 1110–1120 | www.nature.com/natureneuroscience 1113



ARTICLES NATURE NEUROSCIENCE

require distinct computations, we selectively probed the require-
ment of SC activity during separate epochs22,25,31 using bilat-
eral optogenetic inactivation of SC neurons, mediated by virally 
expressed eNpHR3.0 (Fig. 5a,b, Supplementary Fig. 1c and 
Methods). Optogenetic inactivation that covered the entire trial 
period (3 s) of a randomly selected 25% of trials resulted in a selec-
tive Anti impairment on those trials (Fig. 5c and Extended Data 
Fig. 7a; permutation test, P = 4 × 10−3 across animals or all trials). 
This replicates previous pharmacological inactivation results where 
SC activity was suppressed during the entire session3. Turning to 
temporally specific inactivations (detailed inactivation timing in 
Extended Data Fig. 2b), we found that bilateral SC inactivation 
during the task cue period did not result in any behavioral deficit 
(Fig. 5d, left), consistent with a sensory role for cue neurons that 
are not linked to correct performance (Fig. 3b). In contrast, bilateral 
SC inactivation during the delay epoch significantly increased error 
rates on Anti trials (Fig. 5d, middle; bootstrapped P = 8 × 10−3).  
This suggests that an intact representation of task context, which is 

neither a spatial variable nor a motor variable, is required in the SC 
during the delay period for animals to perform the behavior. This 
finding is consistent with our electrophysiology data that linked SC 
delay/choice neurons to flexible sensorimotor behavior (Fig. 3b) 
but does not distinguish whether the required task context repre-
sentation is generated within the SC or inherited from elsewhere. 
These delay period inactivation effects are unlikely to be due to an 
overlap between early processing of the visual stimulus and slow 
release from inactivation at the end of the delay period (full release 
reached ~60 ms after delay offset; Fig. 5b). The visual stimulus was 
presented only after subjects responded to the end of the delay by 
withdrawing from the center nose port, which, on average, occurred 
~127 ms after delay offset (Extended Data Fig. 2b), long after the 
inactivation release had concluded. Finally, given the strong and 
early choice signal in the SC, we were surprised to find that bilateral 
choice period inactivation did not have any effect on choice accu-
racy (Fig. 5d, right; P > 0.05), although we did observe an increase 
in reaction time (RT) on correct Anti responses (Extended Data  
Fig. 7b; RT increase = 22.5 ± 15.3 ms). This lack of effect on choice 
accuracy upon choice period inactivation might, at first sight, sug-
gest that, in contrast to what the electrophysiological results implied, 
the SC is only a minor contributor to choice formation. However, 
computational efforts that we now describe revealed that even mod-
els in which the SC is solely responsible for choice formation can be 
fully compatible with our optogenetic and electrophysiological data.

Collicular models of executive control consistent with pertur-
bation data. We used computational modeling to ask two main 
questions. First, is choice formation circuitry external to the SC 
necessary to explain the lack of behavioral impairment after choice 
period SC inactivation? Or could circuitry purely within the SC lead 
to both choice formation and the pattern of behavioral changes in 
our optogenetic experiments (Fig. 5d)? Second, if neural circuitry 
purely within the SC is indeed sufficient to account for the optoge-
netic data, what constraints do that data place on the circuitry? To 
address these questions, we used a simplified SC model framework, 
inspired by the electrophysiological data in Fig. 4, and focused on 
reproducing the data of Fig. 5d. As we describe below, this approach 
revealed a surprisingly diverse population of models consistent with 
the data32–34.

The SC was represented by four pools of neurons: a Pro pool and 
an Anti pool on each side of the brain (Fig. 6a and Methods). Pro 
and Anti pools differed in strengths of connections with other pools 
in the model and in receiving opposite levels of excitation in Pro ver-
sus Anti trials. Given our experimental finding that Pro-preferring 
neurons had a strong tendency to be Contra-preferring neurons 
(Fig. 4b), and given that unilateral SC stimulation drives contralat-
eral orienting motions15,35, we took the Pro pool in the model as also 
being a Contra-preferring pool and as driving the motor output. 
The final choice of the model on each trial was determined by which 
of the two Pro/Contra units, on the opposite sides of the brain, had 
greater activity. Mirroring the Pro/Contra tendency, our experi-
mental data showed that Anti-preferring neurons tended to also 
be Ipsi-preferring (Fig. 4b). But this tendency was not as strong as 
the Pro/Contra tendency (Fig. 4b). We, therefore, did not constrain 
the Anti pool to be either Contra-preferring or Ipsi-preferring. Our 
model had free parameters describing the sign and strength of con-
nections between the units (Fig. 6a), the degree of silencing induced 
by optogenetic inactivation, the magnitude of additive noise at each 
timestep and others (Methods). Connections between the two sides 
of the SC are known to be both excitatory and inhibitory18,36, so we 
did not specify connection signs.

We optimized model parameters by minimizing an error func-
tion defined such that low errors corresponded to a qualitative 
match to the control and the optogenetic inactivation results of  
Fig. 5d (Methods): namely, control trials had higher accuracy for Pro 
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compared to Anti (Extended Data Fig. 1c); delay period inactivation 
impaired accuracy on Anti trials but not Pro trials (Fig. 5d, middle); 
and choice period inactivation had no effect on choice accuracy 
in either Anti or Pro trials (Fig. 5d, right). We developed a ‘frozen 
noise’ approach to train the network to a specified % correct accu-
racy in each particular trial condition (Methods). After starting the 
minimizations of the error function from many thousands of dif-
ferent random parameter values, 373 of them had low final error; 
we refer to these as ‘solutions’ (Methods). When each solution was 
then tested with noise realizations different from those that they 
were trained on, the models replicated the inactivation patterns that 
we observed in experimental data (Fig. 6b,c). We found that model 
solutions that fit the delay and choice period inactivation data could 
also predict the full-trial and cue period inactivation data, with vari-
ability across solutions (Fig. 6d). To investigate whether the model 
dynamics encode similar information as those found in recorded SC 
neurons, we decoded Pro/Anti task context and Left/Right choice 
for each model solution (Methods). The average decoding patterns 
parallel those found in our electrophysiology data (Fig. 2): task con-
text information during the task cue and delay period (Fig. 6e), fol-
lowed by a strong choice signal after target stimulus presentation 
(Fig. 6f). Across individual model solutions, and similarly to the SC 
neural data of Fig. 4, we found both Anti/Ipsi-preferring and Anti/
Contra-preferring units, with a prevalence of Anti/Ipsi preference 
(Extended Data Fig. 8a). To examine whether Anti/Ipsi and Anti/
Contra units could also be found within individual models, we fol-
lowed the same procedures with a more complex, six-node model 
in which each side of the brain had two Anti pools, each with its 
own dynamics and connectivity parameters (Extended Data Fig. 9a). 
Results with the six-node models matched the main results of the 
four-node models and contained, within individual model solutions, 
both Anti/Ipsi-preferring and Anti/Contra-preferring units, with a 
majority of Anti/Ipsi units (Extended Data Fig. 9d), as in the experi-
mental data. More generally, the six-node results show that our 
conclusions can generalize beyond the four-node models. We con-
clude that choice formation circuitry lying purely within the SC and 
involving Pro/Contra and a majority Anti/Ipsi neurons is sufficient 
to reproduce our behavioral and optogenetic perturbation data.

We next asked whether the 373 solutions corresponded to vari-
ants of a single mechanism or many distinct dynamical mecha-
nisms that solve the task. We used singular value decomposition 
(SVD) of the activity of the four model units across time to find 
a low-dimensional representation of all solutions in terms of their 
dynamics (Methods); the dynamics of each solution correspond to 
one point in this low-dimensional space (Fig. 7a). To our surprise, 
the dynamics across solutions were highly heterogeneous (Fig. 7a,b). 
The variability in dynamics is also reflected in variability in param-
eter values (Extended Data Fig. 10). Principal component analysis 
on the parameter values or dynamics revealed that more than ten 
principal components were required to explain 90% of the variance 
in parameter values or dynamics across the 373 solutions (Extended 
Data Fig. 8b), even though, within each individual solution, fewer 
than three dimensions were needed to explain variance across time 
in the trial (Extended Data Fig. 8c). These findings demonstrate 
that the simple dynamical circuit architecture of Fig. 6a can perform 
the task using a large variety of configurations.

Despite the highly varied dynamics and parameter values in dif-
ferent solutions, we identified two features that were tightly con-
strained and consistent across model solutions and one feature that 
previous literature had led us to expect to be tightly constrained 
but was not. First, almost all solutions had inhibitory connections 
from the Anti unit to the Pro unit on the same hemisphere (verti-
cal weight from Anti to Pro unit, 365/373 negative, 97.9%; Fig. 7c 
and Extended Data Fig. 9c). This suggests that suppression of the 
‘default’ Pro pathway by Anti task context representation, locally 
in the SC, might be important for avoiding reflexive Pro responses 
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toward the target stimulus. Consistent with this modeling result, 
experimentally measured noise correlations between pairs of simul-
taneously recorded SC neurons encoding opposite task contexts 
were significantly negative (25 pairs, P = 0.03, two-sided t-test;  
Fig. 7d). Note that the connections from the Pro unit back to the 
ipsilateral Anti unit were not necessarily inhibitory (vertical weights 
from Pro to Anti unit, 67.6% negative; Extended Data Fig. 10), indi-
cating an asymmetry in the circuit architecture of Pro and Anti rep-
resentations that might parallel behavioral asymmetries. Second, 
most solutions had excitatory connections from the Anti unit to the 
Pro unit on the opposite hemisphere (diagonal weights from Anti 
to Pro unit, 339/373 positive, 90.9%; Fig. 7c and Extended Data Fig. 
9c), constituting a pathway that executes the task-appropriate ori-
enting response away from the target stimulus during Anti trials.

There was a small fraction of solutions that had positive vertical 
weights from the Anti to the ipsilateral Pro unit (dots to the right-
hand side of vertical dashed line in Fig. 7c) or negative diagonal 
weights (dots below the horizontal dashed line in Fig. 7c), but most 
of these (34/38, 89.47%) had a more positive diagonal weight than 
the vertical weight (across all 373 solutions, 98.9% are above the 
dashed red diagonal line in Fig. 7c; also see Extended Data Fig. 9c), 
consistent with a functionally competitive inhibition mechanism 
between the two projections. A Schur decomposition analysis of the 
connectivity matrix showed that, compared to connectivity matrices 
that had the same symmetry constraints as our model (Fig. 6a), but 
were otherwise random, the weight matrices of the 373 solutions 
had over-represented positive eigenvalues on the activity modes 
representing the task context (differential activity of both Anti units 
compared to both Pro units, 94.9% of solutions) and diagonal activ-
ity patterns (Anti unit on one side co-activated with the Pro unit on 

the other, 98.4% of solutions; Extended Data Fig. 8d). Similar results 
were found in the six-node models (Extended Data Fig. 9e). The 
Schur decomposition analysis demonstrates that most solutions 
have stable task and diagonal activity patterns.

We expected to find mutual inhibition between nodes repre-
senting opposite decisions, which is a commonly proposed motif 
in the literature8,37–39. However, we found that model solutions 
did not require mutual inhibition between the Pro/Contra nodes  
(Fig. 7e and Extended Data Fig. 9b), even while displaying strong 
separation between the neural activity representing opposite deci-
sions (see light versus dark green traces for the two Pro/Contra 
units in the examples of Fig. 7b).

In summary, by optimizing models of within-SC circuity to 
match behavioral and optogenetic results, we identified key ana-
tomical and functional features of possible SC circuits for execu-
tive control. First, even in our simplified models with only four 
or six nodes, there are many very diverse circuits and dynamics 
that satisfy the experimental constraints. Second, in contrast to 
expectations from the literature8,37–39, we found that direct mutual 
inhibition between nodes representing opposite decisions was not 
required and should not be taken as an experimental prediction. 
Third, two features that correspond to key processes of executive 
control—namely, (1) inhibiting task-inappropriate behavior and (2) 
executing task-appropriate actions—were found to be required, in 
the form of (1) inhibitory connections from Anti-preferring units 
to Pro-preferring units on the same hemisphere and (2) excitatory 
connections from Anti units to Pro units on the opposite hemi-
sphere. These results support a role for the SC in executive control 
and delineate SC circuit properties to implement this role. We note 
that our data do not demonstrate that such a role would be exclusive 
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to the SC; it might be performed in coordination with other execu-
tive control regions.

Discussion
We used sub-trial optogenetic perturbations, electrophysiological 
recordings and computational modeling of rat SC to investigate cir-
cuit mechanisms during executive control. Pro/Anti, the behavior 
that we used, has a cued task context (‘Pro’ versus ‘Anti’) that indi-
cates whether the subjects should orient toward a visual stimulus 
(Pro task) or away from it (Anti task). Each trial of this behavior is 
composed of three successive phases (Fig. 1). First, the trial begins 

with presentation of a non-spatial context cue. Second, there is a 
brief delay period, during which the subjects should hold the iden-
tity of the current trial’s context in memory. Third, the lateralized 
visual stimulus is presented, and subjects can begin to combine 
information about task context and the visual stimulus side, to form 
and express their left or right choice.

Electrophysiological recordings revealed that rat SC neuron fir-
ing rates encoded both task context (Pro versus Anti) and, after the 
lateralized visual stimulus, side choice. Across all recorded SC cells, 
we found neurons displaying all four possible Pro/Anti × Contra/
Ipsi firing rate preferences (Fig. 1c–e and Extended Data Fig. 5a). 
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However, this apparent coding heterogeneity appeared more orderly 
in a subset of neurons. Within these neurons, referred to as ‘delay/
choice’ neurons, there was a strong correlation between task context 
and choice selectivity where Pro-preference was more correlated with 
Contra-preference (Fig. 4 and Extended Data Fig. 5b). This result 
reveals critical structure in neural representations of the task and pro-
vides an important constraint for circuit models of the phenomenon.

We also compared SC recordings to recordings from medial PFC 
and the FOF—two rodent cortical regions that are primary candi-
dates for forming choices during Pro/Anti behavior. Remarkably, 
we found that delay/choice SC neurons encoded the side choice 
much faster, by ~200 ms, than either medial PFC or FOF neurons 

(Figs. 2c and 3c). This contrasts with previous findings, using a per-
ceptual decision task in mice that did not require executive control, 
of similar choice decoding timing in frontal cortex and midbrain 
neurons40. The long timing difference between SC and FOF or PFC 
is sufficient for information to reverberate back and forth across the 
brain. Such a long duration suggests that, at least in this rat behavior, 
the SC leads choice formation. PFC or other brain structures might 
still play an instrumental role in enabling SC dynamics to reach the 
correct choice, and we cannot rule out that an as-yet unrecorded 
region could show even earlier decision signals. But our current 
data place SC as a leading candidate for playing a central, driving 
role in choice computation.
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We note that the SC is a highly conserved structure of the ver-
tebrate brain, whereas the PFC has undergone dramatic changes 
during evolution41,42, which means that the relative roles of SC and 
PFC in executive control might be quite different across rodents and 
primates. Our behavior closely parallels analogous primate para-
digms to facilitate such cross-species comparison. Single-neuron 
recordings in monkey SC27 and dorsolateral PFC43,44 have revealed 
heterogeneous task-relevant signals similar to those observed here  
(Fig. 1c–e), but a direct comparison of monkey cortical and SC pop-
ulation decoding accuracy and latency remains to be done.

The causal contribution of SC activity to spatial decision-making, 
target selection, spatial attention and avoidance/approach behav-
ior has most often been investigated using unilateral perturba-
tions10,25,45–47. These experiments, all within the spatial domain, have 
established the SC’s importance in contralateral control of orienting 
responses. Consistent with those findings, unilateral pharmacologi-
cal SC inactivation during our Pro/Anti task also results in a contra-
lateral impairment3.

In this study, however, we used bilateral optogenetic perturba-
tions (Fig. 5). Notably, the optogenetic inactivation experiments 
provide much more specific and revealing information than the 
hours-long pharmacological inactivations that we used previ-
ously3. The lack of effect of SC inactivation during the sensory 
cue suggests that cue period encoding in the SC is not required 
for behavior; other regions might provide redundant information 
during the cue period. On the other hand, when the sensory cue 
for task context is no longer present, and before a lateralized choice 
can be formed, context encoding in the SC is causally required for 
Anti behavior (Fig. 5d, middle versus left panel). Although we did 
not specifically target medial or lateral SC in our recording and 
inactivation experiments, the selective requirement of SC activity 
for Anti responses is reminiscent of previous studies that impli-
cate the medial SC in avoidance behavior48. It should be noted 
that, although our optogenetic inactivation should be restricted to 
SC neurons, selective upstream inputs to the SC could potentially 
be affected49.

In contrast to the behavioral impairment caused by delay period 
inactivation, optogenetic inactivations of the SC during the imme-
diately subsequent period, corresponding to when choices can 
be formed and expressed, did not impair choices (Fig. 5d, right). 
The amount of time for visual information to reach the superficial 
(~35 ms)50 and then deep layers of the SC is considerably longer than 
the optogenetic onset time (~10 ms) (Fig. 5b). It is, thus, unlikely 
that choices could be formed before the optogenetic effects. One 
caveat is that we quantified the temporal precision of optogenetic 
inactivation of SC activity in anesthetized rats (Methods). The time 
course of inactivation in awake animals might be different.

Given that the electrophysiological data suggest that the SC 
plays a leading role in choice formation, the lack of an inactivation 
effect during the choice formation period seems, at first, surprising. 
However, because optogenetic inactivation does not produce 100% 
silencing, the choice period result does not necessarily preclude the 
SC from playing a central role in choice formation. The result does, 
however, indicate that SC dynamics during the choice period should 
be substantially more robust to perturbation than during the con-
text encoding period. Although reminiscent of the lack of response 
period perturbation effects reported in a previous delayed orient-
ing task25, we think that the underlying cause is very different. In 
Kopec et al.25, animals could form a spatial action plan much earlier 
than the response period. The lack of an impairment from response 
period inactivation was interpreted as due to the inactivation occur-
ring after spatial action planning. In contrast, in the Pro/Anti task, 
spatial action planning cannot be formed before the inactivated 
choice period, because that is the critical window of sensorimotor 
transformation when task cue and direction information are first 
combined to guide action. Susceptibility to perturbation during the 

delay period, but robustness during the choice period, appears to be 
not trivial to replicate in circuit models of the SC.

To systematically probe whether one could, in fact, construct 
SC circuit models in which the SC computed choice in a manner 
susceptible to delay period inactivation but robust to choice period 
inactivation, we built a simplified recurrent network model of the 
SC. Common practice in the field would be to find a point in the 
model parameter space that satisfies the experimental data con-
straints8,37. We call such a point a ‘circuit solution.’ Given the dispa-
rate constraints posed by our data, would any circuit solutions exist? 
Large-scale computational searches for solutions revealed that, 
indeed, they exist (Fig. 6). Moreover, there exist many solutions, and 
they are quite diverse in nature (Fig. 7). How should we think about 
circuit hypotheses if there are many circuit solutions compatible 
with the data? We reasoned that features common across solutions 
would be predictions of our modeling framework as a whole, not 
just of an individual specific hypothesis, and we should, thus, iden-
tify common features as particularly important model predictions. 
Past model circuits built to perform the Pro/Anti behavior (and not 
constrained or informed by our SC data) have features correspond-
ing to response inhibition and to vector inversion, as well as mutual 
inhibition between nodes representing opposite contexts and oppo-
site choices8,38. We found that motifs corresponding to response 
inhibition and to vector inversion were, indeed, common across our 
diverse set of SC solutions. However, even though response inhibi-
tion (that is, inhibition from Anti units to Pro units) was necessary, 
we found that reciprocal mutual inhibition back from the Pro units 
to the Anti units was not necessary. Most surprisingly, we found 
that an almost universal feature of circuit models built to decide 
between possible options—namely, mutual inhibition between 
nodes representing opposite choices8,37–39—was not necessary  
(Fig. 7e). Our results, thus, suggest that common assumptions 
regarding decision-making circuitry must be taken with care. 
Future work is needed to investigate whether the dynamical modes 
identified in our models can be generalized to other model archi-
tectures and whether detailed response patterns, such as increases 
or decreases in firing rates, are important for model performance.

To summarize, our data and modeling show how SC circuits in 
the Pro/Anti behavior represent context information and combine 
it with sensory information to compute choice. A key finding is the 
physiological identification of a subset of SC neurons that link con-
text and choice representation in a systematic way. These SC neu-
rons appear to be important for choice computation during the Pro/
Anti behavior. Populations of models of the neural circuit dynamics 
between these neurons, built to match our experimental data, single 
out key circuit mechanisms in the form of specific connectivity pre-
dictions that are robust across highly diverse model solutions. Our 
data support participation of the SC in all periods of the Pro/Anti 
behavior, as well as a leading role for the SC in choice computation, 
and our circuit models set out a predictive framework with which to 
further elucidate these processes.
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Methods
Subjects. Twenty-four adult male Long–Evans rats (Taconic) were used 
for the experiments presented in this study. Of these, 12 rats were used for 
electrophysiology recordings, and 12 rats were implanted with optical !bers for the 
optogenetic inactivation and yellow #uorescent protein (YFP) control experiments. 
Animal use procedures were approved by the Princeton University Institutional 
Animal Care and Use Committee and carried out in accordance with National 
Institutes of Health standards. Rats used in the experimental and control groups 
were randomly chosen from a common pool of purchased animals.

Behavior. Rats were trained on the Pro/Anti task-switching behavior3. Each trial 
began with an LED turning on in the center port, instructing the rats to nose-poke 
there to initiate a trial. They were required to keep their noses in the center port 
until the center LED offset (nose fixation). Broken fixation trials were ignored in 
all analyses. During the first 1 s of nose fixation, a Pro or Anti sound was played 
(clearly distinguishable FM-modulated sounds) to indicate the current task, 
followed by a 500-ms silent delay when rats had to remember the current task 
while maintaining nose fixation. The center LED was then turned off, allowing 
the animal to withdraw from the center port. The withdrawal would trigger either 
a left or right LED to turn on as the target stimulus, which remained on until 
rats poked into one of the side ports. Trials with left or right LED were randomly 
interleaved throughout each session. RT is defined as the time from target onset 
until side poke. On a Pro trial, rats were rewarded for orienting toward the side 
LED; on an Anti trial, rats were rewarded for orienting away from the side LED 
and into the port without light. A correct choice was rewarded by 24 μl of water; an 
incorrect choice resulted in a loud sound, no reward and a short timeout. To ensure 
that all sub-trial optogenetic inactivation conditions have the same duration for 
laser stimulation (750 ms), all rats implanted with optical fibers were trained on a 
modified version of the behavior where the task cue period and the delay period 
both lasted 750 ms instead of the 1-s cue period and the 500-ms delay period as in 
the original design.

In all recording and inactivation sessions, rats performed alternating blocks 
of Pro and Anti trials, where block switches occurred within single sessions, after 
a minimum of 15 trials per block, and when a local estimate of performance 
(over the last ten trials in this block) reached a threshold of 70% correct. Detailed 
training procedures and codes can be found in a previous report3. All data 
collection and analysis were not performed blinded to the conditions of  
the experiments.

Recordings. Rats were implanted with custom-made movable microdrives, and 
recordings were made with platinum–iridium tetrodes24. To target the prelimbic 
(PL) area of PFC (+3.2 anteroposterior (AP) mm, ±0.75 mediolateral (ML) mm 
from bregma), tetrodes were initially positioned at ~1.5 mm below brain surface 
and were advanced daily during recording sessions to sample different neurons. 
To target the intermediate and deep layers of the SC (−6.8 AP mm, ±1.8 ML mm), 
tetrodes were initially positioned at ~3 mm below brain surface and advanced daily. 
Electrode placements were confirmed with histology. Four rats had both PL and 
SC implants (same hemisphere); two rats had a PL implant only; and one rat had 
an SC implant only. Five rats had FOF implants, with coordinates similar to those 
used in ref. 24. The choice of recording area and hemisphere side was assigned 
randomly for each rat.

Analysis of animals’ head orientation angles during recording. To examine if 
animals used any overt embodied strategy to encode the Pro/Anti task context 
during the delay period, we analyzed animals’ head orientation angles in 21 SC 
recording sessions with reliable head tracking (defined as sessions with >25 correct 
Pro trials and >25 correct Anti trials with low variance of head angles within 
trials—that is, within-trial s.d. of head orientations <10°). Video tracking of rats’ 
head orientation was acquired using red and blue LEDs placed on the tetrode 
recording drive head stages of the implanted rats (Neuralynx), as previously 
described24. For each trial in each session, normalized continuous head angle data 
were binned for each 5-ms time bin during the fixation period. Receiver operating 
characterisitc (ROC) analysis was conducted to discriminate head angles on Pro 
versus Anti trials for each time bin. Significant area under the curve (AUC) values 
(P < 0.01) are shown for all sessions and all time points. Non-significant AUC 
values were set to 0.5.

Analysis of neural data. Spike sorting was done manually using SpikeSort3D 
(Neuralynx), and only isolated single units were included in the following analyses. 
To perform analyses on the neural population, we only analyzed neurons recorded 
for a sufficient number of trials. More specifically, we only analyzed neurons 
for which we had collected responses during at least 25 correct trials for each of 
the four possible task conditions (Pro-Go-Right, Pro-Go-Left, Anti- Go-Right 
and Anti-Go-Left). This resulted in the analysis of 193 neurons (out of 215) in 
SC, and 291 neurons (out of 331) in PFC. Unless otherwise noted, all analyses 
were performed on correct trials. The response of each neuron was quantified 
by counting the number of spikes in 250-ms-wide bins. In all analyses (except 
in Supplementary Figs. 2 and 4), the response was aligned to the time when the 
target stimulus appeared (that is, the time of withdrawal from the center port). 

The temporal gap between the fixation offset (center LED turning off) and target 
stimulus onset (upon the animal’s withdrawal from the center poke) was controlled 
by animals and, thus, variable on each trial. On average, rats withdrew from 
the center port 127 ms after fixation offset. Therefore, in all figures, we indicate 
the start of the delay period (end of task cue presentation) 0.627 s before target 
stimulus onset (500-ms delay + 127 ms) and the start of task cue presentation 
at 1.627 s before target onset (1 s of task cue presentation before the delay). To 
examine SC’s role in the execution of motor responses, in Supplementary Fig. 4 we 
aligned SC neural activity to the time of side-poke. Unless otherwise noted, in all 
figures except Fig. 4, the analysis is causal—that is, the value plotted at time 0 refers 
to the neural activity in a time bin between −250 ms and 0 ms.

Quantification of single-neuron selectivity. The amount of information encoded 
by a single neuron about a task variable was measured at each time point using d′, 
defined as the difference in the number of spikes fired in response to two generic 
task conditions (here named A and B), normalized by the square root of the pooled 
variance: 
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Information about the task context (Pro/Anti d′) was computed by comparing 
the responses during Pro trials and the responses during Anti trials (with positive 
d′ indicating Pro preference). Information about the rat’s choice (choice d′) was 
computed by comparing the responses during trials that resulted in an orienting 
movement contralateral to the recorded neuron and trials that resulted in an 
ipsilateral orienting movement (with positive d′ indicating Contra preference) (Fig. 
1c–e). Quantification by computing the area under the ROC curves or firing rate 
differences led to similar results (Supplementary Fig. 3).

The threshold above which a single d′ value was considered significantly 
different than 0 was computed based on the pairwise t-test between the two 
conditions, using a P value of 0.05. When we evaluated the significance of d′ 
values computed at multiple time points (Fig. 3a), a shuffling procedure was also 
employed to correct for multiple comparisons. In this procedure, the d′ at each 
time point was recomputed 100 times after randomly shuffling the labels of Pro 
and Anti trials, and the 95th percentile of the resulting overall distribution of 
shuffled d′ values was used as the significance threshold.

Single-neuron selectivity about the task context was used to define two distinct 
classes of neurons (Fig. 3a). ‘Cue neurons’ were defined as those with peak Pro/
Anti d′ at a time while the task cue was still being presented. Delay/choice neurons 
were defined as those with peak Pro/Anti d′ at times after the task cue was no 
longer present. Neurons whose Pro/Anti d′ was never significantly different from 0 
were excluded from both groups.

Within the class of ‘delay/choice neurons’, we used single-neuron selectivity about 
the choice in the first time bin after stimulus presentation (that is, from 0 to 250 ms) 
to further subdivide these cells into two groups (Fig. 4). ‘Contra neurons’ had a 
significantly higher response on trials with contralateral-orienting choices, whereas 
‘Ipsi neurons’ had a significantly higher response on trials with ipsilateral choices.

Population-level decoding analysis. To determine the amount of task-relevant 
information available in the SC and PFC neural populations at each time point, 
we performed a series of cross-validated linear classification analyses30. For each 
analysis, we considered the spike count responses of a population of N neurons 
to a task condition as a population ‘response vector’ x, and we randomly assigned 
60% of the recorded trials (30 trials) as the training set and the remaining 40% 
of the trials (20 trials) as the test set. The training set was used to compute the 
linear hyperplane that would optimally separate the population response vectors 
corresponding to two different task conditions (for example, Pro trials versus 
Anti trials). This linear readout can also be written as f(x) = wTx + b where w is 
the n-dimensional vector of weights applied to each of the neurons, and b is a 
scalar threshold. The classification of a test response vector x was then assigned 
depending on the sign of f(x), and the performance was computed as the fraction 
of correct classifications over 500 resampling iterations. Because some of the 
neurons were recorded in different sessions, trials were always shuffled on each 
iteration to destroy any artificial trial-by-trial correlations. The hyperplane and 
threshold were computed using a support vector machine algorithm using the 
LIBSVM library (https://www.csie.ntu.edu.tw/~cjlin/libsvm).

When comparing the classification performances for neural populations with 
different numbers of neurons, we randomly subsampled identical numbers of 
neurons without replacement on each iteration. Because the overall average firing 
rate was higher in SC than in PFC, we tested whether matching firing rates was 
sufficient to explain the classification result (Supplementary Fig. 8a), by removing 
single spikes at random from the SC dataset until the average firing rates were 
matched and by performing, again, the classification analysis on the equalized SC 
population.

When classification analyses were used to compare performances during 
correct and error trials (Fig. 3b), we always trained the classifier using correct 
trials, and we tested the classifier using either correct or error trials. The number 
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of trials used for testing was limited by the neuron with the fewest number of error 
trials per condition (nine trials).

To compute the latency of the rise in choice classification performance for 
different neural populations (Figs. 2c and 3c), we followed a previously reported 
method51. We evaluated the average time after the appearance of the target stimulus 
necessary for the population readout to reach a fixed threshold. More specifically, 
on each iteration of the resampling procedure we computed the classification 
performances for each time point, we smoothed the resulting curve by averaging 
the value with its five immediately previous time points (that is, a causal filter), and 
we noted the time point where the curve crossed the performance threshold. We 
computed the mean and the standard error of the latency as the mean and standard 
deviation of these values. For each number of neurons being used (n = 193 in  
Fig. 2c and n = 29 in Fig. 3c), the threshold was chosen so that curves from 
individual resamples would be unlikely to reach it by chance, yet all of the 
resamples would reach it at some point in time. Consequently, a performance 
threshold of 0.7 was used for Fig. 2c, and 0.65 was used for Fig. 3c. When 
comparing latencies across two populations, we computed the P value using a 
non-parametric permutation test, where we determined the fraction of resampling 
iterations for which the latency difference was flipped in sign relative to the actual 
difference between the means of the full dataset51. We further tested how these 
measurements of latency in the rise of classification performance depended on the 
total number of neurons (Supplementary Fig. 8b and Supplementary Information).

To further illustrate the early onset of choice information in the SC population 
compared to other cortical populations (Fig. 2c), we also compared neurons 
recorded from a different frontal cortical area, the FOF. We recorded 429 single 
units in the FOF in a version of the Pro/Anti task with a shorter delay period. 
All timings after stimulus onset are the same for SC, PFC and FOF recordings, 
thus providing a fair comparison for the onset of choice information in these 
populations. As described previously, when comparing the classification 
performances for neural populations with different numbers of neurons, we 
randomly subsampled identical numbers of neurons without replacement on each 
iteration (n = 193 neurons).

To compute the significance of differences in the magnitude (or latency) 
of population performances, we adopted a bootstrap approach based on our 
resampling procedure52. More specifically, we first evaluated the average 
performance (or latency) across all iterations for the two populations, and we then 
computed the P value as the fraction of iterations in which, by chance, the value for 
the population with the lower average was above the value for the population with 
the higher average.

Optical fiber construction, virus injection and fiber implantation. Chemically 
sharpened optical fibers (50/125 μm LC–LC duplex fiber cable, http://www.
fibercables.com) were prepared as previously described31. To ensure that the 
distance between the two optical fibers was the distance between bilateral SC 
(3.6 mm), we inserted two metal cannulae into a plastic template and guided the 
optical fibers through the cannulae, which were 3.6 mm apart (Fig. 5a).

Basic virus injection techniques were identical to those described 
previously31. At the targeted coordinates (SC, −6.8 AP mm, ±1.8 ML mm 
from bregma), two injections of 9.2 nl of adeno-associated virus 
(AAV) (AAV5-CaMKIIα-eYFP-eNpHR3.0 for inactivations, nine rats; 
AAV5-CaMKIIα-eYFP for controls, three rats) were made every 100 μm in depth 
starting 3.5 mm below brain surface for 1.5 mm. Four additional injection tracts 
were completed: one 500 μm anterior, one 500 μm posterior, one 500 μm medial 
and one 500 μm lateral from the central tract. A total of 1.5 μl of virus was injected 
over the course of 30 min. Chemically sharpened bilateral SC fiber implant was 
lowered down the central injection track, with the tip of each fiber positioned 
at 4.4 mm below brain surface to target the center of SC’s intermediate and deep 
layers. Training was resumed 5 days after surgery. Virus expression was allowed to 
develop for 8 weeks before behavioral testing began.

Optogenetic inactivation and analysis. For each inactivation session, animals’ 
implants were connected to a 1-m patch cable connected to a fiber rotary joint 
(Princetel) mounted above the behavioral chamber. A 200-mW, 532-nm laser 
(OEM Laser Systems) was then connected to deliver constant light at 25 mW per 
site, with a <5 mW difference between the left and right SC. Laser illumination 
occurred on 25% randomly chosen trials in each behavioral session. Different 
optogenetic conditions (3-s full-trial inactivation, 750-ms task cue, 750-ms delay 
or 750-ms choice period inactivation) were randomly interleaved for all sessions to 
control for behavioral fluctuations across days. Choice period inactivation started 
at the onset of visual target and lasted 750 ms, covering the time it took animals to 
form and execute the orienting choice into the side-poke (690.8 ± 39.1 ms, mean 
± s.e.m. across animals’ median RT in optogenetic inactivation sessions). Switch 
trials were excluded in these analyses.

Behavioral changes due to optogenetic inactivation were quantified as the 
performance difference between inactivation (laser) trials and control (no-laser) 
trials from the same sessions. These results are then compared to YFP control 
data. For each session, we calculated the baseline error rate or RT for Pro and Anti 
control trials and subtracted that mean value from the performance on individual 
inactivation trials. After obtaining the normalized changes in performance due to 

inactivation for individual sessions, we concatenated trials across all sessions and 
all rats and computed the mean and s.e.m. across trials. Non-parametric bootstrap 
procedures or permutation tests were used to compute significance values (shuffled 
5,000 times). All rats were included in the full-trial inactivation analyses. For 
sub-trial inactivation analyses, we only included the rats (8/9) that had significant 
full-trial effects.

Acute characterization of optogenetic effects. To measure the effects of 
optogenetic inactivation on neural activity, acute recordings of infected SC 
neurons were performed in anesthetized rats (Fig. 5b). An etched fiber optic and 
sharp tungsten electrode (0.5 or 1.0 MΩ) were independently advanced to the 
center of the infected area. For each neuron tested, baseline neural activity was 
recorded for 2 s, followed by 8 s of laser stimulation at 25 mW, and another 2 s of 
post-stimulation recording, repeated for >10 times. We observed that the onset 
and offset of optogenetic inactivation of neural activity was within 50 ms of laser 
onset and offset (Fig. 5b).

Model setup. Our model consists of four dynamical units; each unit had an 
external (Vi) and an internal (Ui) variable. The relationship between the internal 
and external variables is given by:
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Here η(t) is the optogenetic inactivation fraction, which tells us the fraction of 
this unit’s output that is silenced by optogenetic inactivation in a time-dependent 
fashion (1 = no optogenetic inactivation). β = 0.5 controls the slope of the 
input–output relationship, and θ = 0.05 controls the midpoint of the input–output 
function. The internal variables had dynamical equations:
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Where W is the network weight matrix, input is external inputs into the network 
and τ = 0.09 s is a fixed time constant for each unit. S is a white noise Weiner 
process, scaled by noise amplitude parameter σ. W was parameterized by eight 
parameters that controlled the Pro self-weights sW_P and Anti self-weights sW_A, 
the horizontal weights hW_P between the two Pro units and hW_A between the 
two Anti units, the vertical weights vW_PA from the Anti unit to the Pro unit on 
the same side and vW_AP from the Pro unit to the Anti unit on the same side and 
the diagonal weights dW_PA from each Anti unit to the Pro unit on the opposite 
side and dW_AP from each Pro unit to the Anti unit on the opposite side. The 
external input into the network was given by:
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Econstant is the constant excitation to all units. Parameter EPro−bias is the constant 
excitation to both Pro units but not to the Anti units. Erule is the rule (task context) 
input, which is active only during the rule cue and delay periods and not during 
the choice period. On Anti trials, the two Anti units get task rule input EAnti−rule, 
and, on Pro trials, the two Pro units get task rule input EPro−rule. Parameter Echoice−period 
is excitation to all units only during the target period when a light stimulus is 
presented and animals are free to choose. Parameter Elight is excitation to both 
units on the side (L versus R) activated by the light stimulus, when the stimulus 
is active. Each trial was simulated numerically using the forward Euler method 
with timestep dt = 0.024 s, which we found to balance accuracy and computational 
speed. To encourage robust solutions, we trained the network on four different 
trial lengths. The task cue + delay period was either 1 s or 1.2 s, and the target 
period was either 0.45 s or 0.6 s. Individual trials of the same trial type and duration 
are differentiated by the noise samples generated by the additive Gaussian noise 
process. Model’s choice on each trial is determined by the relative activation of 
the Pro units (see below). Therefore, although Pro units are directly linked to 
contralateral choices, Anti units are not directly linked to action and, therefore, can 
be either Ipsi-preferring or Contra-preferring.

Model cost function and frozen noise approach. The cost function has two terms 
C = C1 + C2. The first term C1 penalizes model % correct accuracy that deviates 
from the target % correct accuracy. The second term C2 penalizes weak model 
choices where output unit values are close together. The % correct accuracy for 
the C1 term was defined as an average over NF trials in each optogenetic condition. 
Each of the NF trials differed from the others by having its own instantiation 
of neurons-by-timestep noise. This noise was kept frozen over iterations of the 
optimization procedure (thus rendering a cost function landscape that was 
constant across iteration steps). We reasoned that, for large enough NF, and for a 
successfully trained network, this procedure would result in the targeted % correct 
accuracy even when the noise was no longer frozen, as successfully demonstrated 
in Fig. 6b,c.

C1 Term: To create a fully differentiable choice readout, the model outputs the 
probability of the correct choice as: for a Pro trial where the light stimulus is on 
the left hemifield, the probability of a correct choice was given by HitP = 0.5 × (1 
+ tanh((VPro−R − VPro−L)/θ1)), and, for an Anti trial, HitA = 0.5 × (1 + tanh((VPro−L 
− VPro−R)/θ1)). θ1 is a fixed sensitivity parameter. For each trial type, we penalized 
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the difference between the trial type’s target hit percentage and the average hit 
percentage from the model across all trials of that type. The overall cost from this 
first term was the sum across trial types 
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C2 Term: The C1 term encourages the model to reach the target hit percentage 
on every trial rather than making strong choices on each trial, some right and some 
wrong, that average to the target hit percentage. Therefore, we introduced a second 
cost term that penalizes weak choices where the activation of the two Pro units are 
close. For a Pro trial where the light stimulus is on the left hemifield, C2 = −βc(tanh
((VPro−R − VPro−L)/θ2))2; for an Anti trial, C2 = −βc(tanh((VPro−L − VPro−R)/θ2))2. θ2 is a 
fixed parameter that controls the sensitivity of this term, and βc is a fixed parameter 
controlling the strength of this term. We used the fixed parameter values θ1 = 0.05, 
θ2 = 0.15 and βc = 0.001.

Model optimization. We initialized many different model solutions with random 
parameter values and a random seed for the random number generator to generate 
unique noise for each model solution. For each initialization, we minimized the 
cost function using constrained parabolic minimization.

Constrained parabolic minimization. At each step, the algorithm approximates the 
cost function locally using the Hessian matrix and gradient vector, which defines 
a parabolic surface. The minimization takes a step in the direction that minimizes 
the cost on this parabola with the step length equal to a constrained search radius. 
If the resulting step would increase the cost function, the step is not taken, the 
search radius is reduced and another step is attempted. As the search radius 
becomes smaller, this method converges to gradient descent.

Two-stage optimization. For each initialization, an initial minimization was 
done using NF = 50 trials per condition. If this initial minimization passed a set 
of criteria, then a further minimization was done using NF = 1,000 trials per 
condition. The initial criteria were that performance on Pro trials was greater 
than Anti trials, and Anti performance on delay period opto trials was worse than 
control or choice period opto trials. The final minimization terminated after 1,000 
iterations or with parameter step tolerance of 1 × 10−12. Optimizations with a final 
cost below −0.0001 were accepted as model solutions. We ended up with n = 373 
unique model solutions.

Model analysis. We used singular value decomposition (SVD) as a dimensionality 
reduction on the dynamics of the networks. We simulated 200 trials for each 
model solution for each trial type (total 6 = Pro/Anti × control/delay-period-opto/
choice-period-opto). Then, we computed the average trajectory for each unit in the 
model on correct and incorrect trials for each trial type. The average trajectories 
were concatenated into a model response vector (length M = 4 units × hit/error × 
Pro/Anti × control/delay/choice opto × T timesteps). We created response matrix 
(R) of response vectors for all model solutions (size N × M). We used SVD to 
project R into a two-dimensional space (Fig. 7a). To compute the average task and 
choice decoding, we computed the d′ sensitivity index for each solution and the 
decoding accuracy: % correct = NormalCDF(d′/sqrt(2)). When computing the 
distribution of choice d′ values (Extended Data Fig. 8a), we used the activity of Pro 
and Anti model units in the middle of the choice epoch.

Schur decomposition analysis. The Schur decomposition factorizes the network 
connectivity matrix W = MQMT, where M is a 4 × 4 matrix whose columns are 
orthogonal modes of W. Q is an upper triangular matrix. The diagonal of Q 
contains the eigenvalues associated with each column of M. The off-diagonal 
terms of Q describe the feed-forward interactions between each mode of M. 
Each Schur vector can be thought of as a functional mode in the network and has 
a corresponding eigenvalue that informs whether that mode gets amplified or 
diminished by the network53–55. We classified each Schur vector by the sign of each 
entry in the vector. For example, if the two Pro units have one sign, and  
the two Anti units have the opposite sign, we classify that vector as a ‘task’  
mode. If the eigenvalue was complex-valued, we determined its stability by 
examining only the real-valued component. For a more detailed discussion,  
see the Supplementary Information.

Six-node SC model. Our six-node model (Extended Data Fig. 9) is a 
straightforward extension of the four-node model. We add an additional Anti 
unit (Anti-2) to each side. Anti-1 and Anti-2 receive the same external input. 
However, they have independent weights to and from the Pro units, to and 
from the contralateral units and independent self weights. In addition, we have 
bidirectionally independent weights between Anti-1 and Anti-2. Thus, Anti-1 
and Anti-2 are allowed to be relatively independent. We used the same two-stage 
optimization procedure. Our cost function again depended only on the activity  
of the Pro nodes.

Statistics. Statistical analyses were conducted in MATLAB (2015, 2017) or 
Julia (1.51). No statistical methods were used to predetermine sample sizes, 

but our sample sizes are similar to those reported in previous publications31. 
We only analyzed neurons for which we had collected responses during at least 
25 correct trials for each of the four possible task conditions, resulting in the 
analysis of 193 neurons (out of 215) in SC and 291 neurons (out of 331) in PFC. 
For population decoding analyses, performance was computed as the fraction of 
correct classifications over 500 resampling iterations. Because some of the neurons 
were recorded in different sessions, trials were always shuffled on each iteration 
to destroy any artificial trial-by-trial correlations. There was no assumption of 
data distribution for non-parametric tests. For other analyses, data distribution 
was assumed to be normal, but this was not formally tested. Statistical details for 
each analysis are specified in the respective part of the text. Data analyses were 
not performed blinded to the conditions of the experiments. See the Life Sciences 
Reporting Summary for additional information.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Processed behavioral, electrophysiological, optogenetic and video data are publicly 
available on GitHub: https://github.com/Brody-Lab/Proanti. Raw data are archived 
at Princeton University and available from the corresponding author upon 
reasonable request. Modeling data are publicly available on GitHub: https://github.
com/carlosbrody/superior_colliculus_mutual_inhibition.

Code availability
All software used for behavioral training is available on the Brody lab website at 
http://brodylab.org/code/proanti-code. All custom data analysis and modeling 
codes are freely available on the corresponding GitHub repositories: https://github.
com/Brody-Lab/Proanti (analysis) and https://github.com/carlosbrody/superior_
colliculus_mutual_inhibition (modeling).
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Extended Data Fig. 1 | Post-surgery performance for implanted rats. Asymmetries between Pro and Anti response time (RT), accuracy, and task switch 
cost in implanted rats. a, Normalized RT distributions of an example rat. Histograms of correct Pro (n!=!3894 trials) and correct Anti (n!=!3323) RTs are 
shown on top and error Pro (n!=!1239 trials) and error Anti (n!=!1161 trials) RTs are shown in the bottom. Each curve is normalized to have a total area 
of 1. Median RTs for Pro and Anti hits and errors are indicated by vertical bars; 95% confidence intervals across trials for each trial type are indicated by 
horizontal bars. b, RT summary of 16 individual rats (7 for SC and PFC neural recordings and 9 for optogenetic inactivation experiments). Left: median RTs 
for Anti hits and Pro hits for all rats (n!=!16). ***P!=!4!×!10−4, two-sided bootstrap test. Right: RT difference between Pro and Anti, hits and errors, averaged 
across all rats (n!=!16). For each rat, the difference between median RTs of paired conditions was calculated. White bar shows the mean and s.e.m. across 
rats for Anti hit RTs minus Pro hit RTs, P!=!4!×!10−4, two-sided bootstrap test. Green bar shows Pro hit RTs minus Pro error RTs, P!=!4!×!10−4, two-sided 
bootstrap test. Orange bar shows Anti hit RTs minus Anti error RTs, P!=!4!×!10−4, two-sided bootstrap test. c, Pro and Anti performance for individual rats 
(n!=!16). Mean and s.e.m. of Pro and Anti performance are computed over sessions for each rat and plotted against each other. Average Pro (green) and 
Anti (orange) performance across rats was plotted in the upper left corner (n!=!16). Pro versus Anti, P!=!0.003, two-sided bootstrap test. d, Switch cost 
asymmetry. Left: percent correct as a function of trial number relative to a task block switch for one example rat. Each data point is the mean and s.e.m. 
across trials for Pro and Anti accuracy on three trials before and after the switch. Right: average accuracy switch cost for Pro trials (P!=!4!×!10−4) and Anti 
trials (P!=!4!×!10−4) across rats (n!=!16). The cost of switching to Pro was larger than the cost of switching to Anti (P!=!0.002), two-sided bootstrap tests.
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Extended Data Fig. 2 | Detailed timing of behavioral events in recording and optogenetic sessions. a, A light in the center port indicates that rats should 
nose poke there to initiate a trial and keep their noses there until the center light offset (‘‘fixation’’ period). During the first 1 s of the fixation period, a 
Pro or Anti sound is played to indicate the current task, followed by a 500-ms silent delay. The center light is then turned off, indicating that the animal 
is now free to withdraw from the center port, and the moment it withdraws, a left or right light is turned on to indicate the target location. The temporal 
gap between fixation offset (that is, end of the delay period) and target stimulus onset was controlled by animals and was thus variable on each trial 
(mean!=!127!ms after fixation offset). Reaction Time (RT) is defined as the time from target onset until side poke. The 3 vertical lines correspond to the 
vertical lines in Fig. 1–3. b, Similar to a, for optogenetic sessions. To ensure that all sub-trial optogenetic inactivation conditions have the same laser 
duration (750!ms, green shade), rats were trained on a modified version of the behavior where the task cue period and the delay period both lasted 
750!ms. Choice period inactivation started at the onset of visual target and lasted 750!ms, covering the time it took animals to form and execute the 
orienting choice into the side poke (690.8 ± 39.1!ms, mean ± s.e.m. across animals’ median RT in optogenetic inactivation sessions).
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Extended Data Fig. 3 | Individual PFC neurons encode task and choice variables during flexible sensorimotor routing. a-c, Same as in Fig. 1c-e, for the 
PFC population (291 out of 331 total neurons).

NATURE NEUROSCIENCE | www.nature.com/natureneuroscience



ARTICLESNATURE NEUROSCIENCE

Extended Data Fig. 4 | Breakdown of electrophysiology results by rat. Similar to Fig. 1c,e, separated by recordings from individual rats. Mean performance 
on Pro and Anti trials during each rat’s recording sessions are shown above each panel. Rat ‘J205’, ‘A117’, and ‘Z014’ had implants both in SC and in PFC. 
Rats with fewer than 20 neurons were excluded from this analysis.
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Extended Data Fig. 5 | Relationship between task context (Pro/Anti) and choice (Contra/Ipsi) d’ across the SC population. a, For each SC neuron, 
the signed Pro/Anti d’ computed at the time of peak Pro/Anti selectivity was plotted against the signed Choice d’ computed at the time of peak Choice 
selectivity. No correlation is observed (Pearson’s correlation coefficient r!=!0.06, n!=!193, P!=!0.3821, t-test). b, Correlation between Pro/Anti d’ and 
Choice d’ for the whole SC population computed at all time points. The two black dashed lines in the color bar indicate the correlation values that are not 
significantly different from 0 (P > 0.05). The correlation is significantly different than 0 only at times shortly after the appearance of the target stimulus. 
Positive correlation corresponds to either a Pro (d’ > 0) and Contra (d’ > 0) preference or an Anti (d’ < 0) and Ipsi (d’ < 0) preference. Bin size!=!250!ms, 
centered (that is, it includes spikes from ± 125!ms relative to the plotted timepoint.
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Extended Data Fig. 6 | Information regarding the side light stimulus in SC neurons. a, SC population decoding performance (mean ± s.d.) for linear 
classification of correct Pro versus Anti trials (task, red line), Go-Left versus Go-Right trials (choice, blue line), and Left-Light versus Right-Light trials (light 
stimulus, black line). Compared to the early and strong choice information in the SC population, linearly decodable information related to the light stimulus 
appeared later and weaker, suggesting that information being received by deep SC layer neurons about which side the Light is on is combined nonlinearly 
and very rapidly with context information, to produce early, linearly decodable information about choice. b, Matrix of light stimulus (left side light/ right 
side light) selectivity for the SC neural population, similar to Fig. 1e.

NATURE NEUROSCIENCE | www.nature.com/natureneuroscience



ARTICLES NATURE NEUROSCIENCE

Extended Data Fig. 7 | Effect of bilateral SC inactivation and YFP control. a, Effect of full-trial and sub-trial inactivations of bilateral SC on Pro (green) 
and Anti (orange) error rate (mean and s.e.m.) compared to YFP controls (gray). Full-trial: n!=!662, 615 for Pro and Anti inactivation trials; n!=!362, 322 
for Pro and Anti control trials. ***P!=!4!×!10−4, two-sided permutation test. Task cue: n!=!413, 401 for Pro and Anti inactivation trials; n!=!290, 271 for Pro 
and Anti control trials. Delay: n!=!562, 527 for Pro and Anti inactivation trials; n!=!315, 260 for Pro and Anti control trials. ***P!=!4!×!10−4; **P!=!0.0012, 
two-sided permutation tests. Choice: n!=!547, 506 for Pro and Anti inactivation trials; n!=!319, 261 for Pro and Anti control trials. All paired statistics shown 
here are computed using a two-sided permutation test, shuffled 5000 times. b, Effect of full-trial and sub-trial inactivations of bilateral SC on response 
time (RT). For each behavioral session, a median RT on non-stimulated control trials is calculated and subtracted from the RTs on inactivation trials, and 
these normalized RT changes due to inactivation are plotted here. Each curve is normalized to have a total area of 1. Vertical bars show the median RT 
changes for correct Pro and Anti trials; s.e.m. across trials for each trial type are indicated by horizontal bars. A shift to the right indicates slowing due to 
inactivation and a shift to the left indicates speeding.
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Extended Data Fig. 8 | Variability across model solutions in dynamics and parameters, and common functional properties. a, Distribution of choice 
preference (d’) for Pro and Anti model units from 373 individual model solutions during the choice period (Methods). Note that although most Anti units 
(red shading) were Ipsi-preferring, we also observed Anti/Contra-preferring units (red shaded counts to the right of zero), similar to the SC neural data 
(Fig. 4). In contrast, all Pro units (gray shading) were Contra-preferring. b, The dimensionality of parameters across model solutions, and of dynamics 
across model solutions (n!=!373 solutions). Eight SVD dimensions are required to explain 90% of the variance in dynamics across model solutions. Ten 
PCA dimensions are required to explain 90% of the variance in parameters across model solutions. c, Variance explained by each dimension of PCA 
performed on each model solution’s dynamics. Full trial: PCA computed on all time points. Delay period only: PCA computed only during the delay period. 
Target period only: PCA computed only during the target period. Mean ± s.d across 373 model solutions. d, The connectivity matrix of each model solution 
was analyzed via the Schur Decomposition (Methods). All solutions (n = 373) contained one of each of the following functional modes: All, Side of brain, 
Task, and Diagonal. The percentage of solutions with positive eigenvalues for each mode is reported.
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Extended Data Fig. 9 | A 6-node SC model replicates results from the 4-node SC model. a, Schematic of the 6-node SC model, in which each hemisphere 
contains two Anti pools and one Pro pool. b, Format and results similar to Fig. 7e. Histogram of horizontal weights between the two Pro units (as illustrated 
by the insert cartoon) for all 36 six-node model solutions. Red arrow marks average value across solutions. Solutions do not require inhibitory weights 
between the two Pro/Contra pools. c, Format and results similar to Fig. 7c. Scatter plot of diagonal weights (from Anti units to the Pro unit on the opposite 
hemisphere) against vertical weights (from Anti units to the Pro unit on the same hemisphere), for all model solutions. Each dot represents the average 
weights from the two Anti units in a solution. Red line marks unity. d, Format and results similar to Extended Data Fig. 8a. Histogram of choice d’ for Pro 
and Anti nodes during the choice period (n!=!36 model solutions). We observed both Anti/Ipsi and Anti-Contra-preferring units, with a majority of Anti/
Ipsi units, as in the experimental data. e, Similar to Extended Data Fig. 8d. Percentage of model solutions with positive eigenvalues for each Schur mode 
type, based on Schur Decomposition analysis of the connectivity matrix. The solution networks (n!=!36 solutions, red, mean ± 95% CI) are compared 
against 10,000 random networks (black) with the same symmetry and parameter value constraints. Dashed line indicates results from 10,000 random 
networks with the same symmetry, but not the parameter value constraints.
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Extended Data Fig. 10 | Distributions of parameters across all model solutions. The distribution of parameter values across all solutions (n!=!373) is 
plotted for each of the 16 free parameters (Methods). Vertical dashed line marks zero for reference. Red arrow marks average parameter value across 
solutions. The weight parameters determined the connectivity matrix between units. The noise parameter was the variance of white noise added to each 
unit on each time step. The Pro and Anti rule input weights determined the strength of the task context inputs to either the Pro or Anti units. The stimulus 
input determined the weight of the stimulus to either the Left or Right units. The Pro bias term was a constant input to only the Pro units. The target period 
input was a constant input to all nodes, only during the target period. The constant input was a bias term during all time points for all units. The opto 
strength was the fraction of each node’s output that was transmitted to the other nodes during inactivations; a strength of 1 is no inactivation, a strength of 
0 is complete inactivation.
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n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection All software used for behavioral training is available on the Brody lab website at http://brodylab.org/code/proanti-code. 

Data analysis For population-level decoding analysis, we employed a Support Vector Machine algorithm using the LIBSVM library (v3.17; https://
www.csie.ntu.edu.tw/~cjlin/libsvm/). For modeling, we used Forward-mode automatic differentiation (v0.10; Revels et al., 2016, 
arXiv:1607.07892). All other analysis codes used in this study were custom codes written in MATLAB (2015, 2017) or Julia (1.51). Software 
used for data analysis, as well as raw and processed data, are available in these 2 github repositories: https://github.com/carlosbrody/
superior_colliculus_mutual_inhibition; https://github.com/Brody-Lab/Proanti.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Processed behavioral, electrophysiological, optogenetic, and video data are publicly available on github: https://github.com/Brody-Lab/Proanti. Raw data are 
archived at Princeton University and available from the corresponding author upon reasonable request. Modeling data are publicly available on github: https://
github.com/carlosbrody/superior_colliculus_mutual_inhibition.
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Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences
For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to pre-determine sample sizes, but our sample sizes are similar to those reported in previous publications 
(Hanks et al., 2015). We used 24 adult male Long-Evans rats (Taconic) for the experiments presented in this study. Of these, 12 rats were used 
for electrophysiology recordings, and 12 rats were implanted with optical fibers for the optogenetic inactivation and YFP control experiments. 
All statistical tests were made between groups with similar sample sizes.

Data exclusions No data has been excluded, except for the electrophysiological analysis, in which from the total of 546 single units recorded in the superior 
colliculus and prelimbic cortex, we only analyzed neurons for which we had collected responses during at least 25 correct trials for each of the 
four possible task conditions. These neurons summed to a total of 484. The rationale behind this exclusion is to only include neurons in 
recording sessions where there were enough trials in each condition (Pro correct, Anti correct, Pro error, Anti error) for analyses (see Pagan et 
al., 2014).

Replication Electrophysiological recordings were conducted in multiple rats for each brain region recorded (5 rats for SC, 6 rats for mPFC, and 5 rats for 
FOF), and we observed consistent results across individual rats. Of these implanted rats, 4 rats had both SC and mPFC recordings, controlling 
for behavioral differences across recording sessions. Optogenetic inactivation experiments were carried out from 9 rats, over multiple 
sessions, and all types of inactivations were randomly interleaved for each session. Modeling analyses were conducted over 373 model 
solutions. All main conclusions from the 4-node models were replicated in a separate set of 6-node models with different model architecture.

Randomization All subjects were randomly allocated into experimental groups.

Blinding All behavioral and neural responses in our experiments were objectively measured by automated hardware and software system that do not 
require human intervention, and therefore were not blinded to investigators.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Male, long–Evans rats (Rattus norvegicus) between the ages of 6 and 24 months were used for this study.

Wild animals The study did not involve the wild animals.

Field-collected samples The study did not involve the Field-collected samples from the filed.

Ethics oversight All animal use procedures were approved by the Princeton University Institutional Animal Care and Use Committee and carried 
out in accordance with NIH standards.

Note that full information on the approval of the study protocol must also be provided in the manuscript.


