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Dynamic Target Match Signals in Perirhinal Cortex Can Be
Explained by Instantaneous Computations That Act on
Dynamic Input from Inferotemporal Cortex

Marino Pagan and X Nicole C. Rust
Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104

Finding sought objects requires the brain to combine visual and target signals to determine when a target is in view. To investigate how
the brain implements these computations, we recorded neural responses in inferotemporal cortex (IT) and perirhinal cortex (PRH) as
macaque monkeys performed a delayed-match-to-sample target search task. Our data suggest that visual and target signals were com-
bined within or before IT in the ventral visual pathway and then passed onto PRH, where they were reformatted into a more explicit target
match signal over !10 –15 ms. Accounting for these dynamics in PRH did not require proposing dynamic computations within PRH itself
but, rather, could be attributed to instantaneous PRH computations performed upon an input representation from IT that changed with
time. We found that the dynamics of the IT representation arose from two commonly observed features: individual IT neurons whose
response preferences were not simply rescaled with time and variable response latencies across the population. Our results demonstrate
that these types of time-varying responses have important consequences for downstream computation and suggest that dynamic repre-
sentations can arise within a feedforward framework as a consequence of instantaneous computations performed upon time-varying
inputs.
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Introduction
Finding sought objects and switching between targets requires
the flexible combination of visual information about the content
of a currently viewed scene with working memory information
about the identity of a sought target. These signals are thought to be
combined within mid-to-higher stages of the ventral visual pathway
[i.e., within V4 and inferotemporal cortex (IT); Fig. 1], where the
responses of neurons are modulated by changing both the identity of
a visual stimulus and the identity of a sought target (Haenny et al.,
1988; Maunsell et al., 1991; Eskandar et al., 1992; Gibson and Maun-
sell, 1997; Liu and Richmond, 2000; Chelazzi et al., 2001; Bichot et
al., 2005). The resulting target-modulated visual signals are then
thought to be transformed into a “target match” signal that explicitly
reports whether a currently viewed scene contains a target via non-
linear computations that are implemented within perirhinal cortex
(PRH; Chelazzi et al., 1993; Miller and Desimone, 1994; Pagan et al.,
2013) and prefrontal cortex (Miller et al., 1996).

The computations required to create a target match signal can be
envisioned as nonlinear conjunctions or “and-like” computations
between visual and working memory signals (i.e., I am looking at my
car keys “and” I am looking for my car keys). Evolution in the re-
sponses of neurons during and-like computations has been reported
not only during target search (Chelazzi et al., 1993, 2001), but also
for computations involved in motion processing (Pack and Born,
2001; Smith et al., 2005) and object recognition (Brincat and Con-
nor, 2006). Specifically, these studies have revealed a delay between
the time signals arrive within a brain area and the time that conjunc-
tion information appears on the order of tens of milliseconds. These
delays have been attributed to the time required for recurrent circuits
within the brain area performing the computation to execute it
(Brincat and Connor, 2006), possibly via a biased, competitive pro-
cess (Chelazzi et al., 1993).

Here we report a similar phenomenon, but one in which de-
lays in the emergence of conjunction information can be attrib-
uted to computations that are instantaneous and fixed but act on
an input representation that changes over time. More specifically,
we found that during a delayed-match-to-sample target search
task, visual and working memory signals were partially repre-
sented in PRH as separate signals that then evolved into an “and-
like” target match signal over !10 –15 ms. These dynamics were
not simply inherited from the IT inputs and, surprisingly, they
did not require proposing dynamic computation within PRH
itself. Rather, our data were well accounted for by a description in
which the “and-like” computations that produce target match
signals in PRH were gradually implemented across at least two
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processing stages: one that combined vi-
sual and working memory signals within
or before IT to form a partially nonlin-
early separable and time-varying repre-
sentation, followed by computations in
PRH that instantaneously reformatted the
input arriving from IT to produce a more
explicit target match signal.

Materials and Methods
The data reported here are the same data de-
scribed by Pagan et al. (2013). The experi-
mental procedures involved in collecting the
data are described in detail in that report and
are summarized here. Experiments were
performed on two naive adult male rhesus ma-
caque monkeys (Macaca mulatta) with im-
planted head posts and recording chambers.
All procedures were performed in accordance
with the guidelines of the University of Penn-
sylvania Institutional Animal Care and Use
Committee.

All behavioral training and testing were per-
formed using standard operant conditioning
(juice reward), head stabilization, and high-
accuracy, infrared video eye tracking. Monkeys
performed a delayed-match-to-sample task
(Fig. 2a). Monkeys initiated each trial by fixat-
ing a small dot. After a 250 ms delay, an image
indicating the target was presented, followed
by a random number (0 –3, uniformly distrib-
uted) of distractors, and then the target match.
Each image was presented for 400 ms, followed
by a 400 ms blank. Monkeys were required to
maintain fixation throughout the distractors
and make a saccade to a response dot located
7.5 degrees below fixation after 150 ms follow-
ing target match onset but before the onset of the next stimulus to receive
a reward. The same four images were used during all the experiments.
Approximately 25% of trials included the repeated presentation of the
same distractor with zero or one intervening distractors of a different
identity. Behavioral performance was high (monkey 1 " 94%; monkey
2 " 92%). The same target remained fixed within short blocks of !1.7
min that included an average of 9 correct trials. Within each block, four
presentations of each condition (for a fixed target) were collected and all
four target blocks were presented within a “metablock” in pseudoran-
dom order before reshuffling. A minimum of 5 metablocks in total (20
correct presentations for each experimental condition) were collected.
The main components of this experimental design included 16 different
conditions that could be envisioned as existing within a 4 # 4 matrix
defined by each of the four images presented as a visual stimulus in the
context of looking for each of the four images as a target (Fig. 2b). This
matrix includes four target match conditions, which fall along the diag-
onal of this matrix, and 12 “distractor” conditions, which fall off the
matrix diagonal.

Both IT and PRH were accessed via a single recording chamber in each
animal. Chamber placement was guided by anatomical magnetic reso-
nance images and later verified physiologically by the locations and
depths of gray and white matter transitions. The region of IT recorded
was located on both the ventral superior temporal sulcus and the ventral
surface of the brain, over a 4 mm medial-lateral region located lateral to
the anterior middle temporal sulcus (AMTS) that spanned 14 –17 mm
anterior to the ear canals (Liu and Richmond, 2000; Rust and DiCarlo,
2010). The region of PRH recorded was located medial to the AMTS and
lateral to the rhinal sulcus and extended over a 3 mm medial-lateral
region located 19 –22 mm anterior to the ear canals (Liu and Richmond,
2000). We recorded neural activity via a combination of glass-coated
tungsten single electrodes (Alpha Omega) and 16 and 24 channel

U-probes with recording sites arranged linearly and separated by 150 !m
spacing (Plexon). Continuous, wideband neural signals were amplified,
digitized at 40 kHz, and stored via the OmniPlex Data Acquisition Sys-
tem (Plexon). We performed all spike sorting manually offline using
commercially available software (Plexon).

Responses were only analyzed on correct trials. Target matches that
were presented after the maximal number of distractors (n " 3) occurred
with 100% probability and were discarded from the analysis. The re-
sponse of each neuron was measured as the spike count in time bins 25
ms wide and sampled at 1 ms intervals aligned to the onset of each visual
image. In some of our analyses (described below), we assume that trial-
by-trial response variability arose from a Poisson process, as we found
this to be a good account of our data. For each neuron at each bin
position ($50 to 250 ms relative to stimulus onset), we estimated the
Fano factor by fitting the relationship between the mean and variance of
spike counts for each of the 16 experimental conditions (Rust et al.,
2002). Grand mean Fano factor estimates averaged across all neurons
and all windows (based on spike counts in 25 ms windows with shifts of
1 ms) was 1.01 in both IT and PRH. Similar to other reports (Churchland
et al., 2010), we found a small but reliable decrease in Fano factor follow-
ing stimulus onset (e.g., in IT, average Fano factor dropped from a max-
imum mean % SD of 1.06 % 0.15 at $50 ms to 0.94 % 0.13 at 112 ms).

Population performance
To measure the amount and format of information available in the IT
and PRH populations to discriminate target matches and distractors, we
performed two cross-validated classification analyses: a linear readout
and an ideal observer readout (Pagan et al., 2013). For both analyses, we
considered the spike count responses of a population of N neurons
(where N " 164 in IT and PRH) to each condition as a population
“response vector” x with dimensionality equal to Nx1. Our experimental
design resulted in 4 target match conditions and 12 distractor conditions;
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Figure 1. Untangling target match signals. Left, Previous results suggest that during visual target search, visual and working
memory signals are combined within or before IT along the ventral visual pathway in a nonlinearly separable or tangled fashion,
followed by computations in PRH that untangle target match information such that it is more accessible to a linear population
readout. Right, Each point depicts a hypothetical population response, consisting of a vector of the spike count responses to a single
condition on a single trial. Clouds of points depict the predicted dispersion across repeated presentations of the same condition due
to trial-by-trial variability. The different shapes depict the hypothetical responses to different images and the two shades (black,
gray) depict the hypothetical responses to target matches and distractors, respectively. A target-switching task (such as the
delayed-match-to-sample task, Fig. 2) requires discriminating the same objects presented as target matches and as distractors. In
a tangled representation (bottom), a nonlinear decision boundary (corresponding to a nonlinear population readout) is required to
separate these two groups whereas an untangled representation (top) can be read out with a linear decision boundary (corre-
sponding to a linear population readout). As reported by Pagan et al. (2013), target match signals are more tangled in IT and more
untangled in PRH.
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on each iteration we randomly selected 1 distractor condition from each
image (for a total of 4 distractor conditions) to avoid artificial overesti-
mations of classifier performance that could be produced by taking the
prior distribution into account (e.g., scenarios in which the answer is
more likely to be distractor than target match). The linear readout (Fig.
3a) amounted to finding the linear hyperplane that would best separate
the population response vectors corresponding to all of the target match
conditions from the response vectors corresponding to all of the distrac-
tor conditions and took the form:

f&x' " wT x # b, (1)

where w is an Nx1 vector describing the linear weight applied to each
neuron and b is a scalar value that offsets the hyperplane from the origin
and acts as a threshold. The population classification of a test response
vector was assigned to a target match when f(x) exceeded zero and was
classified as a distractor otherwise. The hyperplane and threshold for

each classifier were determined by a support
vector machine (SVM) procedure using the
LIBSVM library (http://www.csie.ntu.edu.
tw/!cjlin/libsvm/) with a linear kernel, the
C-SVC algorithm, and cost (C) set to 0.1.

Our “ideal observer” readout (Fig. 3a) was
designed to be “ideal” in the sense that its per-
formance was limited by the amount of overlap
in the trial-by-trial responses to target matches
and distractors (i.e., it is optimal under the as-
sumption of Poisson trial-by-trial variability)
but not by the complexity of the decision
boundary required to connect the multiple tar-
get match conditions and parse those from the
multiple distractor conditions. We note that
the ideal observer is not proposed as a neurally
plausible readout, but rather as a method to
estimate the maximum achievable perfor-
mance using an arbitrarily complex readout.
To distinguish it from readouts that impose a
particular decision boundary (i.e., “linear”).
we refer to it as a measure of “total” informa-
tion. Importantly, this ideal observer will per-
form well under a range of circumstances in
which complete information for this task exists
(e.g., at one extreme, a population of individ-
ual neurons that each convey large amounts of
linearly separable target match information;
and at the other extreme, a population that
contains visual and working memory signals in
separate subpopulations of neurons). Addi-
tionally, this ideal observer will fail under con-
ditions in which target match information is
incomplete (e.g., a population that contains
purely “visual” or “working memory” neurons
alone). To determine the ideal observer read-
out, we computed the average spike count re-
sponse ruc of each neuron u to each condition c.
The likelihood that a test response k arose from
a particular condition for a neuron was com-
puted as the Poisson probability density:

liku,c&k' "
&ruc'k ! e$ruc

k!
. (2)

When applied to our model responses (see Ma-
terials and Methods, Model Structure), the
Poisson probability density was extended to
continuous responses by replacing the facto-
rial with the gamma function (note that this
formula is equivalent to Eq. 2 when k is an
integer):

liku,c&k' "
&ruc'k ! e$ruc

(&k # 1'
. (3)

The likelihood that a test response vector x arose from each condition c
for the population was computed as the product of the likelihoods for the
individual neurons:

likc&x' " !
u

liku,c&xu', (4)

where xu indicates the response of unit u on a single trial. Finally, we
computed the likelihood that a test response vector arose from the cate-
gory “target match” versus the category “distractor” as the mean of the
likelihoods for target matches and distractors, respectively:

likMatch&x' "
1

4
! "

c!Match
likc&x'; likDistractor&x' "

1

4
! "

c!Distractor
likc&x'.

(5)
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Figure 2. The delayed-match-to-sample task. a, Monkeys performed a delayed-match-to-sample task that required them to
treat the same four images as target matches and as distractors in different blocks of trials. Monkeys initiated a trial by fixating a
small dot. After a delay, an image appeared indicating the identity of the target, followed by a random number (0 –3, uniformly
distributed) of distractors, and then the target match. Monkeys were required to maintain fixation throughout the distractors and
make a downward saccade when the target appeared to receive a reward. Approximately 25% of trials included the repeated
presentation of the same distractor with zero or one intervening distractor of a different identity, similar to Miller and Desimone
(1994). b, Each of four images were presented in all possible combinations as a visual stimulus (looking at), and as a target (looking
for), resulting in a four-by-four response matrix. In these matrices, conditions corresponding to the same visual input correspond
to columns, conditions corresponding to the same working memory or target input correspond to rows, and target matches fall
along the diagonal, while distractors fall off the diagonal. The type of matrix structure required to differentiate other types of
conditions (e.g., looking at image 2 and for image 4) are referred to as non-diagonal cognitive.
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Figure 3. Target match signals are gradually untangled in PRH. Comparison of the temporal evolution of the performance of an ideal observer classifier, to assess the amount of total target match
information, and a linear classifier, to assess the amount of target match information that was accessible to a linear readout. Cross-validated performance was computed with spike counts within
25 ms bins sampled at 1 ms intervals. In all panels, the horizontal dotted line indicates chance performance and n indicates the number of neurons included in each population. a, Performance for
the data pooled across both monkeys; shaded region indicates SE of performance (the y-axis). b, Left, The same data in a shown from 0 to 140 ms to more closely examine the delay but with SE
computed for time (the x-axis). Right, The same analysis performed on a subset of trials in which performances were matched in magnitude from 135 to 140 ms (see Materials and Methods). c, The
same analysis presented in b, right, but applied to the data from each monkey individually. d, Left, As a control analysis, direct measures of linear and nonlinear performance using two classifiers
matched for numbers of parameters (see Materials and Methods). Right, The ratio of chance-corrected linear and nonlinear performance computed from the plots on the right where the ratio was
determined for each time bin as (linear— 0.5)/(nonlinear— 0.5).
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The population classification was assigned to the category with the higher
likelihood.

For both types of classifiers, we computed cross-validated perfor-
mance by randomly assigning 50% of our data (10 repeats) to compute
the representation (“training set”) and testing with the remaining 50% of
our data (10 repeats). To compute performance mean and SE, we per-
formed a resampling procedure in which we randomly assigned repeats
without replacement for training and testing. To combine the responses
of neurons recorded in different sessions into a pseudopopulation, on
each bootstrap iteration we shuffled the trial pairings between neurons to
destroy any (artificial) trial-by-trial correlation structure. The readout
was trained separately for each time point, but across different time
points for the same neuron, we always analyzed data from the same
experimental trials. We performed 3000 resampling iterations for each
time point. Estimates of the mean and SE of performance at each time
point were obtained by computing the mean and SD across bootstrap
iterations (Fig. 3a).

To compute latency estimates for each type of classification (i.e., the
latency for performance to reach a criterion; Fig. 3b,c), we considered the
performance values p for all time points t on one bootstrap iteration and
we fit a 12th-order polynomial to those data by minimizing mean square
error:

p " "
i"0

12

aiti, (6)

(i.e., the function polyfit in Matlab). We used the resulting function to
compute the latency values that corresponded to a range of criteria (i.e.,
the first time points that corresponded to performance values ranging
from 0.55 to 0.875), although we could not estimate latencies on boot-
strap iterations in which a criterion exceeded the maximum of the fitted
function. We computed the latency mean and SE for each criterion as the
mean and SD across these latency estimates. We computed the p-value
for each criterion by considering pairs of latencies for the ideal observer
and linear classifier and determining the fraction of those pairs for which
the difference was flipped in sign relative to the actual difference between
the means of the full dataset (i.e., the fraction of bootstrap iterations in
which the ideal observer classification latency was larger than the linear
classification latency; Efron and Tibshirani, 1994). Additionally, we de-
termined the degree to which smaller-magnitude linear classifier perfor-
mance could account for its longer latency relative to ideal observer
performance by selecting the subset of bootstrap iterations on which
ideal observer and linear classifier performance had the same distribu-
tion of magnitudes within a window of 135–140 ms, and we then calcu-
lated latencies on those magnitude-matched trials (Fig. 3b,c).
Specifically, we performed a histogram equalization in which we com-
puted histograms of performance averaged from 135 to 140 ms for both
classifiers, and within each histogram bin, we randomly selected the same
number of entries from each distribution. We then used the data from
earlier time points on the same trials as these entries to calculate the mean
and SEs for latencies as described above.

By design, our ideal observer classifier (designed to measure total in-
formation) is capable of retrieving a more complex decision boundary
than the linear classifier (i.e., because linear is a subset of total). This is
reflected in the larger number of degrees of freedom available to the ideal
observer. Specifically, the number of ideal observer degrees of freedom is
equal to the number of neurons multiplied by the number of discrimi-
nated conditions (i.e., 164 * 8, given that 4 matches and a subset of 4
distractors were discriminated on each bootstrap iteration of the classi-
fication procedure as described above), whereas the number of linear
classifier degrees of freedom is equal to the number of neurons (i.e., 164).
Because we indirectly infer the time course of nonlinearly separable in-
formation by comparing ideal observer and linear classifier perfor-
mances, we designed a control analysis to evaluate whether differences in
the numbers of parameters led to a spurious interpretation of our results.
To do this, we developed a new linear and nonlinear classifier designed to
measure each of these quantities directly and with the same number of
parameters. The approach we took is analogous to a polynomial expan-
sion of the classifier readout rule, where the first term corresponds to a

linear classifier that captures differences between the mean population
responses, and the second term corresponds to a nonlinear (quadratic)
classifier chosen to maximize the difference between the variances of the
population responses. Specifically, this linear classifier operates by max-
imizing the distance between the mean response across all matches and
the mean response across all distractors, and was computed as the differ-
ence between the population response vector averaged across all matches
and the population response vector averaged across all distractors (for
the training data). Next, a threshold was computed via a brute-force
search as the value that maximizes the fraction of correct classifications of
matches and distractors in the training data. In contrast, the nonlinear
classifier operates by projecting the training data onto the axis that max-
imizes the difference between the variance in the response across all
matches and the variance in the response across all distractors, and this
vector was computed from the eigendecomposition of the difference
between the covariance matrices for matches and for distractors com-
puted from the training data; this nonlinear classifier was taken as the
eigenvector with the maximum absolute eigenvalue. After the population
responses were projected along this axis, they were squared (which acts to
convert these variance differences into mean differences) and a final
threshold was computed as the value that maximized the fraction of
correct classifications of matches and distractors in the training data. We
note that the number of free parameters used by both classifiers is the
same and is equal to the number of neurons in the population (i.e., one
weight for each neuron " 164). The two classifiers also have a similar
structure, consisting of a dot product between the weight vector and the
population response followed by thresholding, and the only difference
between the two classifiers is a parameter-free squaring operation for the
nonlinear classifier that is applied before thresholding. The same cross-
validation procedure described above for the ideal observer and SVM
linear classifier was used to compute mean and SE of performance for
these linear and nonlinear classifiers (Fig. 3d), and, as was the case for the
ideal observer and SVM linear classifier, the parameters for these linear
and nonlinear classifiers were optimized for each time bin.

Decomposition of single-neuron responses
We applied a method to decompose the response matrix for each neuron
into modulations along a fixed set of intuitive, task-relevant components
(Pagan and Rust, 2014): visual stimulus identity (“visual”), target iden-
tity (“working memory”), whether each condition was a target match or
a distractor (“diagonal”), and all other nonlinear combinations of visual
and working memory modulations (“non-diagonal”; Fig. 4a). We also
use the term “cognitive” to indicate the combined working memory and
non-diagonal signals. Our method bears some resemblance to a classic
ANOVA. However, a two-way ANOVA applied to our data would parse
each response matrix into “visual,” “working memory,” and “nonlinear
interaction” terms, and for our task, differentiating among different
types of nonlinear interaction terms (e.g., diagonal versus non-diagonal)
is crucial. Our analysis is also similar to a principal components analysis
(PCA), which recovers a set of orthonormal basis components that cap-
ture the response modulations of a population by assigning each succes-
sive component to account for as much of the remaining population
response variance as possible. However, PCA components are not guar-
anteed to be intuitive, whereas our method involves fixing the compo-
nents to account for intuitive parameters and quantifies the magnitude of
response modulation along each of them. To obtain the basis functions,
we first defined a set of 16 linearly independent matrices whose entries
differentiated between different conditions, and we then applied the
Gram–Schmidt process to impose that each matrix had unitary Euclid-
ean norm and that all matrices were orthogonal. The resulting orthonor-
mal basis is shown later in Figure 7b. It is worth noting that while the
specific basis functions used to describe these modulation components
are not unique (e.g., one could define another set of orthogonal vectors
that would capture the visual modulations equally well), the linear sub-
spaces captured by these specific subsets of components (e.g., the three
visual components shown later in Fig. 7b) are uniquely defined. This
follows from the inherent two-dimensional “looking at”/“looking for”
matrix structure of this task (Fig. 2b), in which the visual and working
memory conditions are presented in all possible combinations and are
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Figure 4. Single-neuron decomposition of population untangling dynamics in PRH. To determine the relationship between single-neuron response properties and population performance
measures, we applied a method to parse each neuron’s responses into intuitive signal modulation components, including firing rate modulations that could be attributed to: visual— changes in the
visual image; working memory— changes in the identity of the target; diagonal—whether a condition was a target match or distractor; non-diagonal— other cognitive modulations
(see Materials and Methods, Eqs. 7,8). We note that the method estimates and corrects for noise to ensure that trial-by-trial variability is not confused with signal. a, Plotted is the strength of each
type of modulation (Eq. 8) as a function of time relative to stimulus onset, for three example neurons whose responses are dominated by one type of modulation. Also shown are the firing rate
response matrices for each neuron, with spike counts averaged within the same window (0 –140 ms after stimulus onset), each rescaled from the minimum (black) to maximum (white) firing rate.
b, Left, The same plots depicted in a, but summed over all neurons in the PRH population. Right, The relationship between these signal modulation magnitudes and performances for the ideal
observer and linear classifier can be described as a classifier component computed from the underlying signals followed by a mapping function that transforms (Figure legend continues.)
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thus independent from one another. In other words, the combined pro-
jection of a neuron’s response vector onto the three visual components
uniquely captures the amount of modulation that can be attributed to
changes in the identity of the visual stimulus.

A neuron’s response matrix R can be decomposed into a weighted sum
of these components:

R " "
i"1

16

mi ! bi, (7)

where bi indicates the ith component, and mi indicates the weight (i.e.,
the amount of modulation) associated with the ith component. Compo-
nents of the same type (i.e., the three visual components shown later in
Fig. 7b) can then be grouped together to quantify the amount of each type
of task-relevant modulation. More specifically, each type of modulation
can be computed as the square root of the sum of the squared modula-
tions along all relevant components:

Mvis " #"
i!vis

mi
2; Mwm " # "

i!wm
mi

2; Mdiag " $mdiag$;

Mnon$diag " # "
i!non$diag

mi
2, (8)

where Mvis is the amount of visual modulation, Mwm is working memory
modulation, Mdiag is diagonal modulation, and Mnon-diag is non-
diagonal modulation.

Bias correction of response components. When estimating the amount of
modulation (or information) in a signal, noise and limited sample size
are known to introduce a positive bias (Treves and Panzeri, 1995). For
example, consider a hypothetical neuron that responds with the same
average firing rate response to each of a set of stimuli. Because neurons
are noisy, if we were to estimate these mean rates based on a limited
number of repeated presentations, we would get the erroneous impres-
sion that the neuron does in fact differentiate between the stimuli. To
overcome this problem, we estimated this bias using a bootstrap proce-
dure and corrected for it. By reversing Equation 7, the estimated squared
modulation along each component i is given by:

mi
2 " &R ! bi

T'2 " &"
j"1

16

rj ! bij'2, (9)

where rj indicates the neuron’s average response to the jth condition, and
bij indicates the jth entry of the ith basis component. To estimate the bias
introduced by limited sampling, we applied a bootstrap procedure in
which we first resampled with replacement 20 responses to each condi-
tion, and we then recomputed the squared modulation of these boot-
strapped responses. The bias could be estimated by subtracting the
modulation computed on the actual responses from the bootstrapped
modulation (Efron and Tibshirani, 1994):

Biasi " m̂i
2 $ mi

2, (10)

where m̂i
2 indicates the squared modulation computed on the resampled

responses. Bias was independently computed and subtracted from each
type of modulation. Using procedures described in detail by Pagan and

Rust (2014), we have confirmed the validity of this bias correction pro-
cedure and its equivalence to other bias correction approaches for this
spike count window size, numbers of trials, and specific dataset.

Relationship between single-neuron responses and population perfor-
mance. The population performance of a linear classifier for discriminat-
ing target matches from distractors depends on the total amount of
diagonal modulation (i.e., the differences in the firing rate responses to
target matches compared with distractors). We define the total amount
of diagonal modulation in a population Mdiag,pop as the square root of the
sum of the squared diagonal modulation Mdiag,n for each neuron n:

Mdiag,pop " #"
n

Mdiag,n
2 . (11)

To transform this measure into an estimate of the performance of a linear
classifier, PerfSVM, we applied the following formula (Poor, 1994; Aver-
beck and Lee, 2006):

PerfSVM " 1 $ H%keff ! Mdiag,pop

2 &, (12)

where H is the complementary error function and keff is a classifier effi-
ciency factor applied to account for the inability of the classifier to extract
all the available information (for example, due to the limited amount of
training data resulting in suboptimal choice of the parameters). This
efficiency parameter is mathematically equivalent to the one introduced
by Geisler and Albrecht (1997), although applied for a slightly different
purpose in that case (to relate neural responses and behavior). We em-
pirically estimated keff as 0.49 and we applied this same value for the
estimation of both the linear classifier and the ideal observer (described
below). We use the term “linear classifier component” to refer to the
quantity keff ! Mdiag,pop.

The performance of an ideal observer for discriminating target
matches from distractors can be approximated using the sum of the
linear classifier component and a “nonlinear classifier component”
keff ! MNL–diag,pop that reflects the amount of nonlinearly separable
target match modulation contained in the combined visual and cog-
nitive signals:

MNL$diag,pop " #Mvis,pop
2 ! Mcog,pop

2

Mvis,pop
2 # Mcog,pop

2 , (13)

where Mvis,pop is computed from each neuron’s visual modulation
analogously to Mdiag,pop, and Mcog,pop measures the amount of cog-
nitive modulation as the sum of working memory and non-diagonal
modulation:

Mvis,pop " #"
n

Mvis,n
2 ; Mcog,pop " #"

n
%Mwm,n

2 # Mnon$diag,n
2 &.

(14)

Finally, the performance of an ideal observer PerfID,OBS. can be esti-
mated as:

PerfID,OBS. " 1 $ H%keff ! Mdiag,pop # keff ! MNL$diag,pop

2 &. (15)

Comparisons between estimated and actual performances for our re-
corded neurons are shown in Figures 4c and 5c, the magnitudes of linear
and nonlinear classifier components are shown in Figure 4d, and the
mapping function used to transform classifier components into esti-
mated performances in Equations 12 and 15 is plotted in Figure 4e.

Fitting an instantaneous feedforward model of PRH to the
IT responses
Our goal was to fit an instantaneous linear-nonlinear (LN) model to
responses of IT neurons to determine whether this type of model could
reproduce the dynamics observed in our recorded PRH population. To
constrain the model, we assumed that the brain implements this trans-
formation optimally and we thus determined the model parameters that
maximized the total amount of diagonal modulation Mdiag,pop in our

4

(Figure legend continued.) the component values into performances. The classifier component
for the linear classifier was computed from the diagonal signal alone. The classifier component
for the ideal observer was computed by summing the linear classifier component signal with a
second nonlinear classifier component that nonlinearly combined the visual and other cognitive
signals (working memory and non-diagonal cognitive; see Materials and Methods, Eqs. 13–15).
The same mapping function was used for both classifier predictions. c, Time courses for the
actual (dotted, replotted from Fig. 3b, left) and estimated (solid) classifier performance values.
d, Time courses of the linear, nonlinear, and summed classifier component signals. e, Time
course for the actual (dotted, replotted from Fig. 3d) and estimated (solid, based on the data on
the left) ratios of chance-corrected linear and nonlinear classifier components with the same
conventions as Figure 3d, right. f, The mapping function used to convert classifier component
magnitudes into performance predictions. The red and gray lines indicate the range of values
used to estimate the linear and ideal observer, respectively. In b and d, the dotted box from 80
to 140 ms and the dashed line at 110 ms are provided as visual benchmarks.
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model PRH. We always performed this maximization at a single time
slice relative to stimulus onset, and we explored different positions of that
training window (e.g., 75 vs 135 ms; Fig. 6b,c). Similar to the classification
procedures described above, our model was designed to be cross-
validated. On each iteration of the cross-validation procedure, 50% of
the IT responses (10 repeats) were used to determine the LN model
parameters, while the remaining 50% were passed through the instanta-
neous LN transformation to produce a set of “model PRH responses.”
The model PRH responses were then compared with the actual PRH
responses by measuring the performances of the same linear classifier
and ideal observer described above (Fig. 6). The cross-validation of the
model and the classifier was integrated, so that the same repeats used to
train the model parameters were also used to train the classifier param-
eters, while the “test repeats” (i.e., the model PRH responses) were used
to determine the classifier performances.

Model structure. The responses of each model PRH neuron were cre-
ated as an n-way linear combination of n IT responses, followed by a
static nonlinearity, where n corresponds to the total number of neurons
in our IT population (n " 164). The linear transformation was applied to
individual trials (i.e., to the spike counts obtained for each of the condi-
tions in one randomly selected repeat of the response matrix Ri for each
ith IT cell) to produce a new matrix L:

L " "
i

wi ! Ri, (16)

where wi indicates the weight applied to the ith IT neuron. The vectors of
weights applied to create different PRH model neurons were constrained
to be orthogonal and to have unitary norm:

Wi ! Wj " 0; "
i

wi
2 " 1, (17)

where Wi and Wj are the vectors of weights for the ith and the jth model
neurons. The matrix L resulting from Equation 16 was then passed
through an instantaneous static nonlinearity to produce the model
responses for the matrix on a single trial (described below). The trial-by-
trial variability in the resulting model PRH thus arose from the trial-by-
trial variability recorded in IT.

Fitting procedure. The fitting procedure was designed to determine the
linear weights for each model PRH neuron with the goal of maximizing
the overall diagonal modulation in the model population. Maximizing
diagonal modulation required us to generate model neurons via linear
combinations of IT responses that both preserved the diagonal modula-
tion already present in the input and extracted the maximal new diagonal
signal (once nonlinearities were applied). We achieved this by splitting

these two types of signals into two different classes of model neurons and,
together, these two classes fully captured all the information available
within the IT responses at the time point used to train the model (de-
scribed in detail below). A third class of model neurons captured all
remaining information present at all other time points (described be-
low). This approach, which involved splitting the total amount of infor-
mation into separate (linear and nonlinear) terms, is analogous to the
linear and nonlinear classifiers with matched numbers of parameters
introduced above.

To determine the parameters for the model, we began by normalizing
the responses of each IT neuron on individual trials by subtracting the
grand mean across all conditions and dividing the result by the SD across
trials, pooled across all conditions. This normalization helped to ensure
that the linear weights were assigned based on a measure that reflected
the magnitude of responses as well as trial-by-trial variability (i.e., d)) as
opposed to raw spike count responses alone. These “normalized re-
sponses” were used to find the linear weights, and once determined, the
weights were converted back to units of spike count before the nonlin-
earities were applied; we note that the normalized responses were used
only to fit the model parameters, whereas “un-normalized” spike counts
were used to determine the cross-validated responses of the model itself.

The first model neuron was fit with the goal of preserving the diagonal
signals contained in the recorded IT responses. This was achieved by
choosing the linear weights for this neuron as the optimal linear discrim-
inant between target match- and distractor-normalized responses (i.e.,
the vector of weights that connects the mean normalized response to
target matches and the mean normalized response to distractors; Fig. 6a,
left). The weights were then un-normalized, and the result of the linear
combination with these weights L (computed according to Eq. 16) was
centered (by subtracting the mean !), and exponentiated to produce the
final response matrix LN1:

LN1 " exp&L $ !'. (18)

The monotonicity of the exponential function ensures that the rank-
order of match and distractor responses is preserved, while at the same
time making all responses positive.

The sets of linear weights for the second class of model PRH neurons
were determined with the goal of maximizing the amount of diagonal
modulation that could be extracted from the remaining IT population
response space (i.e., after the axis defined by the weights of the first model
neuron was removed, thus reducing the dimensionality by 1). The intu-
ition behind the process used to extract diagonal information has been
described in our previous report (Pagan et al., 2013), and is briefly sum-
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Figure 5. Quantifying population performance and its single-neuron correlates in IT. a, The time course of ideal observer and linear classifier population performance in IT (solid line), and for
comparison PRH (dotted line), plotted with the same conventions as Figure 3a. b, The time course of signal modulation components in IT (solid line) and, for comparison, PRH (dotted line), plotted
with the same conventions as Figure 4b. c, A comparison of actual (dashed line) and estimated (solid line) ideal observer and linear classifier population performance for IT, plotted with the same
conventions as Figure 4c. For both IT and PRH, populations included 164 neurons.
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marized in Figure 6a, center. The key step that
leads to diagonal modulation (i.e., separation
between the mean normalized response to
matches and the mean normalized response to
distractors) involves choosing the linear
weights that, once applied, maximize the dif-
ferences between the variance for the target
match-normalized responses and the variance
for the distractor-normalized responses in the
linearly transformed responses (e.g., a broad
distribution in firing rates for target matches
and a narrow distribution for distractors). These
variance differences can then be translated into
mean differences by a non-monotonic nonlin-
earity, such as a squaring operation (Fig. 6a,
center). To find the weights that maximized
the variance differences in the normalized re-
sponses to target matches and distractors, we
designed a method similar in spirit to a PCA
(which determines the dimensions with maxi-
mal variance). Whereas PCA directly com-
putes the eigenvectors of the covariance
matrix, we first computed the difference
between the covariance matrices of the nor-
malized responses to target matches and dis-
tractors and then applied the eigenvalue
decomposition. The resulting set of eigenvec-
tors thus defines the axes along which the vari-
ance differences between the normalized
responses to target matches and distractors are
maximal. Since our task has 16 conditions, the
IT population response at a given time point
has 15 degrees of freedom, i.e., 15 orthogonal
axes with a significant amount of modulation
of any kind. Because the first model PRH neu-
ron described above captures 1 degree of free-
dom, the remaining variance differences are
captured by the first 14 eigenvectors described
above, and we use these to define the linear
weights for the second class of neurons (after
reversing the response normalization). To
translate any variance differences produced
into diagonal modulation, the resulting linear
responses were centered (by subtracting the
mean !) and passed through a squaring non-
linearity (Adelson and Bergen, 1985) to pro-
duce the final response matrix LN2:

LN2 " &L $ !'2. (19)

Finally, the remaining 149 eigenvectors were
used to define the linear weights for the third
class of model PRH neurons (after reversing
the response normalization). Although these
axes are not required to capture information at
the time point used to fit the model (see above),
they are required to capture all the remaining
information that exists within IT at different
time points (Fig. 6a, right). These linear com-
binations were exponentiated (Eq. 18) to pro-
duce final response matrices.

Quantification of code non-stationarities
Code non-stationarities were defined as changes
across time in a neuron’s response modulations
other than rescaling. In our analysis, we mea-
sured the degree of similarity of the responses
at the reference time point of 135 ms and every
other time point by computing Pearson’s cor-
relation coefficient. To determine the proba-

a

Distractors

IT axis 1

IT
 a

xi
s 

2
PRH model
neuron 1 

ex x2

PRH model
neurons 2-15 

PRH model
neurons 16-164 

Output 

Input 

Nonlinearity ex

Target
matches

c

13.8 ms

0 40 80 120

0.5

0.6

0.7

0.8

Time (ms)

P
er

fo
rm

an
ce

Train laterb Train early

IT

model

35%
explained

0 40 80 120

0.5

0.6

0.7

0.8

Time (ms)

P
er

fo
rm

an
ce

d

0 60 120
0

2

4

6

Time (ms)

S
ig

na
l m

od
ul

at
io

n

Visual

0 60 120
Time (ms)

Diagonal

0 60 120
Time (ms)

Working memory

0 60 120
Time (ms)

Residual

PRH

IT

model

PRH

86%
explained

Figure 6. A fixed, instantaneous model of PRH can reproduce the dynamics observed in PRH. An instantaneous linear-nonlinear
model of PRH was fit to maximally untangle the responses of IT neurons. a, Three classes of neurons were created to produce the
model PRH population. Shown are idealized depictions of one neuron from each class. For all three classes, the top of each plot
(Input) depicts the hypothetical responses to the set of all target matches (red) and distractors (gray) in 2 dimensions of the 164
dimensional input population space; dotted lines represent the axis along which IT inputs are projected (i.e., the linear weights for
one model neuron). Curved arrows point to the distributions of target matches and distractors following weighted linear combi-
nation. Below, the same distributions are shown as Output, following application of a nonlinearity (labeled). The first model
neuron (left) inherited all of the linearly separable information available in IT; the linear weights for this neuron were determined
as the optimal linear discriminant (i.e., the axis, represented by the dotted line, that maximizes the mean separation for the set of
matches from the set of distractors) and the nonlinearity for this neuron consisted of exponentiation. The second class of neurons
(2–15; center) computed linearly separable information; the weights for these neurons were determined as those that maximized
the difference between the variances for target matches and distractors (see Materials and Methods) and the nonlinearities
consisted of squaring. The final class of neurons (16 –164; right) were not required to capture information at the time point used
to train the model but were required to capture information at other times (see Materials and Methods). The linear weights for
these neurons were determined as the set of axes that were orthogonal to the previously defined model neurons and those that
were necessary to span the remaining IT space, and the nonlinearities for these neurons were exponential functions. b, c, Time
course of ideal observer and linear classifier performance when model parameters were optimized for IT responses measured
within a 25 ms time window centered at 75 ms (b) and 135 ms (c; yellow lines). Performance is shown for the following: the model
(solid thick line), IT (dotted line), and PRH (solid thin line) for the ideal observer (gray) and linear classifier (red). The increase in
linear classifier performance from IT to PRH is indicated as the shaded region, where light red indicates the increases reproduced by
each model and darker red indicates the increases that remain unaccounted for; the overall magnitudes of increases that are
accounted for are labeled. d, Signal types, shown with the same conventions as Figure 4b, for the following: the model shown in c
(solid thick line), the actual IT data (dotted line), and the actual PRH data (solid thin line). The gray lines are provided as visual aids
to compare the responses at 25 ms (dotted line), 75 ms (dashed line), and 135 ms (solid line) after stimulus onset.
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bility that differences arose from noise, we applied a split-half procedure.
For each neuron, we began by determining the null distribution of cor-
relations at the reference time point (135 ms) by bootstrapping the cor-
relation across many random split-half draws across our set of repeated
presentations. Next, we applied a similar procedure to compute the test
distribution of correlations between the components at 135 ms and those
at every other time point. The degree of non-stationarity was then mea-
sured via a nonparametric comparison between the null and the test
distributions (see Fig. 8). More specifically, we computed the differences
between randomly paired correlation values from the test and the boot-
strap distributions, and we measured the p-value as the fraction of in-
stances in which the correlation value across different time points was
larger than the correlation value for split halves at 135 ms (Efron and
Tibshirani, 1994).

Pseudosimulation
A pseudosimulation approach was used to determine the contribution of
each type of IT non-stationarity on the untangling dynamics of our PRH
model. As an overview, we selectively manipulated different features of
the noise-corrected IT modulations to make them stationary, regener-
ated Poisson trial-by-trial variability, reapplied our PRH model to the
modified IT population, and quantified the delays between ideal observer
classifier and linear classifier performance (see Fig. 9). Enforcing station-
ary responses was accomplished by modifying the structure of neural
responses at each time point to resemble those at the reference time point
of 135 ms, but rescaled such that the absolute amount of each signal type
did not change. More specifically, we deconstructed the population re-
sponse at each time point into three components: the total amounts of
cognitive and visual modulation (i.e., the sum of modulations across the
population), the pattern of modulations across neurons (i.e., the extent
to which each neuron contributes to the overall modulation), and the
code of each neuron’s modulation (i.e., the selectivity for each compo-
nent). In our pseudosimulations, we always maintained the total modu-
lation computed at each time point. To measure the impact of
modulation non-stationarites, we manipulated each neuron’s compo-
nents to match the code at 135 ms while leaving the modulation pattern
intact. To measure the impact of code non-stationarities, we fixed the
modulation pattern to match that at 135 ms while allowing the code
components to change across time.

As a first step, the 15 bias-corrected modulation components for each
neuron were computed for any given time point. Only the visual and
cognitive (working memory and non-diagonal) components were ma-
nipulated. The total amounts of visual (Mvis,pop) and cognitive modula-
tion (Mwm,pop and Mcog,pop, indicating working memory and the other
cognitive components, respectively) were always preserved, and the
components were normalized by dividing them by the total amount of
modulation:

m)i "
mi

Mvis,pop
for all visual components;

m)i "
mi

Mwm,pop
for all working memory components;

m)i "
mi

Mcog,pop
for all other cognitive components. (20)

The strength of the working memory components and that of the re-
maining cognitive components were computed separately to avoid mix-
ing the actual working memory modulations present before the arrival of
the visual signals from the spurious noise present at those early time
points in the remaining modulation components.

To measure the effect of cognitive non-stationarities (see Fig. 9c), we
preserved the normalized cognitive components measured in our data
but replaced the normalized visual components with those measured at
135 ms, followed by rescaling to maintain the total visual modulation at
that time point. Conversely, to measure the delay due to visual non-
stationarities (see Fig. 9d), we preserved the normalized visual compo-
nents but replaced the normalized cognitive components with those
measured at 135 ms, followed by rescaling.

To manipulate the modulation non-stationarities in a manner that did
not impact the code non-stationarities, we needed to quantify the frac-
tional contribution of each neuron in the population to the overall mod-
ulation for each type of signal. We did this by separately summing the
squared normalized visual components, the squared normalized work-
ing memory components for each neuron, and the remaining squared
normalized cognitive components, thus resulting in three vectors ex-
pressing the relative contribution of each neuron to the total visual
modulation and the total cognitive (working memory and remaining
cognitive) modulation:

vvis,n " "
i!vis

m)i 2; vwm,n " "
i!wm

m)i 2; vcog,n " "
i!cog

m)i 2, (21)

where vvis,n represents the entry for the nth neuron in the vector express-
ing the relative contributions to total visual modulation, vwm,n represents
the entry for the nth neuron in the vector expressing the relative contri-
butions to total working memory modulation, and vcog,n represents the
entry for the nth neuron in the vector expressing the relative contribu-
tions to total remaining cognitive modulation. Finally, dividing the nor-
malized components by vvis,n, vwm,n, and vcog,n, we obtained a set of
“neuron-normalized” components whose values express each neuron’s
response preferences independent of each neuron’s relative modulation:

m *i "
m)i

"vis,n
for all visual components;

m*i "
m)i

"wm,n
for all working memory components;

m*i "
m)i

"cog,n
for all other cognitive components. (22)

To measure code non-stationarities (see Fig. 9f ), we replaced the neuron-
normalized components m*i with those at 135 ms, followed by rescaling
to maintain the total modulation at that time point. Conversely, to mea-
sure modulation non-stationarities (see Fig. 9e), we replaced the vectors
vvis, vwm, and vcog with those measured at 135 ms (while maintaining the
neuron-normalized components m*i), followed by rescaling.

Results
To explore the neural mechanisms involved in finding visual
targets, macaque monkeys performed a well controlled yet sim-
plified version of target search in the form of a delayed-match-
to-sample task (Fig. 2a) as we recorded neural responses in IT and
PRH. On each trial, monkeys sequentially viewed images and
indicated when a target image appeared. We held the target fixed
in short blocks of trials and we presented the same images as both
targets and distractors in different blocks. Our experimental de-
sign included four images in all possible combinations as a visual
stimulus (looking at), and as a target (looking for), resulting in 16
experimental conditions arranged in a four-by-four matrix (Fig.
2b). In these matrices, conditions with a fixed visual stimulus
correspond to columns, and conditions with a fixed target (or
working memory) correspond to rows. Additionally, the task re-
quired the monkeys to differentiate target match conditions,
which fall along the diagonal of this matrix, from distractor con-
ditions, which fall off the diagonal (Fig. 2b).

The “untangled” PRH target match representation is
initially “tangled”
As described above, computing the solution to the monkeys’ task
(i.e., determining whether a currently viewed image is a target
match or a distractor) requires combining visual and working
memory information. In a recent paper (Pagan et al., 2013), we
reported evidence that these signals combine within or before IT
in the ventral visual pathway in a largely nonlinearly separable or
“tangled” manner (i.e., one in which target match information is
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present but is not accessible to a linear population readout; Fig. 1,
bottom right), followed by computations in PRH that reformat
this information into a more linearly separable or “untangled”
format (i.e., one more accessible to a linear population readout;
Fig. 1, top right). This evidence was based in part on finding
similar amounts of total target match information in IT and
PRH, as measured by the performance of an ideal observer (see
Materials and Methods, Eqs. 2–5), while also finding that a larger
portion of this information was “linearly separable” (or untan-
gled) in PRH compared with IT, as measured by the performance
of a linear classifier applied to the same data (see Materials and
Methods, Eq. 1). To gain deeper insight into the computations
implemented by PRH to reformat nonlinearly separable target
match signals arriving from IT, we investigated the temporal dy-
namics with which total and linearly separable signals evolved.
We performed these analyses based on the spike count responses
computed in 25 ms windows and we systematically shifted the
positions of the windows relative to the onset of each visual image
presented during our experiment. We found that total informa-
tion arrived in PRH earlier than linearly separable information
(Fig. 3a– c), consistent with target match information that ini-
tially arrived in PRH as partially tangled, followed by the arrival of
more untangled target match information after a short delay.

Quantifying the magnitude of the delay, or equivalently, the
differences in the latencies with which total versus linearly sepa-
rable target match information arrived in PRH, required us to set
a performance criterion to compute latency (e.g., the time re-
quired for performance to reach 0.65). We computed latencies
for a range of such criteria (see Materials and Methods, Eq. 6). We
found that the latency differences between total and linearly sep-
arable information were fairly constant across the broad range of
performance criteria for which we were able to determine them
(range, 0.55– 0.775; latency difference range, 9.3–12.9 ms; mean
latency difference " 11.7 ms; Fig. 3b, left) and that these latency
differences were significant (e.g., p " 0.011 for a criterion of 0.65
and p + 0.05 for all criteria 0.6 – 0.775). Although the latencies of
linearly separable signals computed in this manner were longer
than those for nonlinearly separable signals, linearly separable
signals were also slightly smaller in their overall magnitude (Fig.
3b, left, yellow). To determine the degree to which these magni-
tude differences produced the latency differences we were observ-
ing, we selected the subset of our data in which performance of
the linear classifier and ideal observer was matched on average in
a window placed at 135–140 ms, and we recomputed latencies for
the same trials at earlier time points (see Materials and Methods).
Average latency differences were similar, albeit slightly smaller,
for magnitude-matched data (mean delay across all criteria was
11.2 ms for the magnitude-matched data compared with 11.7 ms
for the original data) and magnitude-matched latency differences
remained significant across a broad range of criteria (e.g., p "
0.018 at a criterion of 0.65; p + 0.05 for criterion 0.6 – 0.775; Fig.
3b, right). The delay in the arrival of linearly separable compared
with total information was confirmed in each monkey individu-
ally (e.g., for a criterion of 0.65, monkey 1: delay " 15.4 ms, p "
0.031; monkey 2: delay " 12.2 ms, p " 0.034; data not shown; for
magnitude-matched data, monkey 1: delay " 13.9 ms, p " 0.046;
monkey 2 delay " 10.9 ms, p " 0.048; Fig. 3c).

One possible interpretation of these results is that the format
of target match information in PRH changes over time from a
more nonlinearly separable to a more linearly separable format.
However, the analyses described above were performed using two
readout approaches (i.e., an SVM linear classifier and an ideal
observer nonlinear classifier) that, while relatively common, dif-

fer in their numbers of parameters and how the parameters are
optimized. These differences may confound the interpretation of
our results, particularly given that, above, we indirectly infer the
amount of nonlinearly separable information at each point in
time by comparing “total” and “linear” performance as opposed
to measuring it directly. As a control analysis, we developed two
new classifiers to measure linear and nonlinear information di-
rectly, and in a comparable manner, including matched numbers
of parameters. Our approach is analogous to a polynomial expan-
sion in that it seeks to deconstruct the classifier decision bound-
ary into a set of terms of increasing order (e.g., w1 * x , w2 *
x 2. . .). To equate the numbers of linear and nonlinear parame-
ters, the linear classifier was characterized by parameters associ-
ated with the first-order term (i.e., the means of the firing rate
distributions) and the nonlinear classifier was characterized by
parameters associated with the second-order term (i.e., the vari-
ances of the firing rate distributions; see Materials and Methods).
A comparison of the temporal evolution of performance for this
linear and this nonlinear classifier (Fig. 3d, left) revealed that at
early times (e.g., 80 ms), linear and nonlinear performance were
approximately matched, but at later times (e.g., 110 ms), nonlin-
ear performance began to plateau as linear performance contin-
ued to rise. Consequently, chance-corrected linear classifier
performance grew to over threefold nonlinear performance by
140 ms (Fig. 3d, right). These results are consistent with a target
match representation that arrives in PRH as partially tangled (i.e.,
an approximately balanced combination of nonlinear and linear
target match information) and then becomes more untangled
(i.e., more linearly separable). These results are inconsistent with
the alternative proposal that target match information increases
in its overall amount but does not change its format with time.

What types of single-neuron responses account for
population untangling dynamics?
The population-based framework described above is useful for
understanding the combined PRH population representation. As
a complementary analysis, we were interested in relating these
descriptions of population dynamics with more intuitive descrip-
tions of the signals reflected in the responses of individual neu-
rons. As an overview of how we determined this relationship, we
applied a technique to parse each neuron’s responses into intui-
tive components (i.e., the magnitudes of visual and different
types of cognitive modulation) and we derived the relationships
between these single-neuron modulations and population per-
formance for the ideal observer and linear classifiers. Our decom-
positions assume that population performance is not impacted
by correlated trial-by-trial variability between neurons (“noise
correlations”), which we have previously determined to be true in
our data (Pagan et al., 2013).

To deconstruct the firing rate modulations of each neuron
into intuitive components, we applied a noise-corrected,
ANOVA-like analysis (see Materials and Methods, Eqs. 7–9) to
parse each neuron’s responses into firing rate modulations that
could be attributed to the following: changing the visual image
(visual; Fig. 2b); changing the identity of the target (working
memory; Fig. 2b); changing whether a condition was a target
match or a distractor (diagonal; Fig. 2b); and changes between
other non-diagonal cognitive conditions (e.g., looking at image 2
and for image 4 versus for image 3; Fig. 2b). Figure 4a shows the
decomposition for three example neurons and Figure 4b shows
the total magnitudes of these signals across the PRH population
as a function of time. We found that the visual signal was the
strongest type of signal in PRH, followed by the diagonal, work-
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ing memory, and non-diagonal signals, respectively. Consistent
with weak “persistent activity,” working memory signals were
present before the other signals, which followed a stimulus-
evoked time course.

Next, we determined the relationship between the magnitudes
of these signals and the predicted population performance for
both readouts as a two-stage process in which signals were first
combined into “classifier components” which were then con-
verted to performance values via a mapping function (Fig. 4b; see
Materials and Methods, Eqs. 11,12). We imposed that the map-
ping function be matched for the two types of classifiers (i.e., the
complementary error function; see Materials and Methods) but
allowed the two classifiers to rely on different signals. We found
that the evolution of linear classifier performance was well de-
scribed by the amount of diagonal signal alone (i.e., the “linear
component”; Fig. 4c,d, red). In contrast, we found that account-
ing for the evolution of ideal observer performance required
summing the linear component with a “nonlinear component”
term that nonlinearly combined the visual signal and the other
two types of cognitive signals (working memory plus non-
diagonal cognitive; Fig. 4d, cyan; see Materials and Methods, Eqs.
13–15). This result can be understood in the context that perfor-
mance of the ideal observer depends upon the degree to which the
responses to the same images presented as target matches and
distractors are nonoverlapping (Fig. 1), and any type of cognitive
modulation (diagonal, working memory, or non-diagonal cog-
nitive) will be at least partially effective at producing this separa-
tion. Notably, the temporal dynamics of the linear and nonlinear
classifier components inferred from these underlying signals pro-
vided a reasonable match to direct measures of the same quanti-
ties, including the saturation of the nonlinear component at
!110 ms as the linear component continued to rise (compare
Fig. 4d, left with Fig. 3d), leading to an increasing ratio between
linear and nonlinear dynamics as a function of time (Fig. 4d,
right). This correspondence allowed us to pinpoint the source of
the population dynamics in PRH. We found that the saturation of
the nonlinear classifier component could largely be attributed to
a visual signal that peaked at !110 ms and then began to fall (Fig.
4b, gray, d, cyan, dashed line). In contrast, the linear classifier
component continued to rise beyond 110 ms due to a continually
rising underlying diagonal signal (Fig. 4b,d, dashed line). Conse-
quently, the representation of target match signals initially ar-
rived in PRH in a more tangled format because visual and
working memory signals initially arrive in PRH to some degree as
separate signals (coinciding with an initial wave of diagonal sig-
nal), followed by the emergence of a more untangled target match
representation !10 –15 ms later, when diagonal signals become
stronger and visual information decreases.

Dynamic representation in PRH can be accounted for by
instantaneous PRH computation
The dynamics underlying untangling in PRH could provide an
important constraint on descriptions of how this computation is
implemented, and thus we were interested in determining the
classes of models that could account for the delay between non-
linearly separable and linearly separable target match informa-
tion in PRH. Following from our previous results (Pagan et al.,
2013), we can begin by ruling out simple descriptions in which
these delays are entirely inherited from the primary input to
PRH—IT— because IT contains less linearly separable informa-
tion. As illustrated in Figure 5, a– c, the linearly separable target
match information (and corresponding diagonal signals) that do
exist in IT are delayed relative to total information (and other

types of signals), but they are smaller in magnitude than those in
PRH. Thus, although the delays between the arrival of tangled
versus untangled information in PRH are likely inherited in part
from IT, they cannot fully account for the result.

In our previous report, we presented evidence that a simple,
feedforward model could account for the transformation of other
types of IT signals into diagonal signals in PRH (Pagan et al.,
2013). In that model, computation in PRH was instantaneous
(and spike count windows were broad). Thus, upon finding that
target match signals evolved dynamically in PRH, we naturally
assumed that accounting for these dynamics would require us to
extend our model to incorporate dynamic PRH computation
(e.g., as a result of implementing these computations in complex,
recurrent circuits). We were very surprised to discover that in-
stead of attributing these delays to PRH, they could be accounted
for by a variant of a feedforward model in which PRH computa-
tions were fixed and acted instantaneously— but crucially—
upon input from IT that changed its content over time (as
described below).

To evaluate this class of model, we considered whether a
model fit to our recorded IT responses could produce a model
population that reproduced the dynamics we observed in PRH.
To constrain the fits, we assumed that computations in PRH
sought to transform the maximal amount of nonlinearly separa-
ble (i.e., tangled) information arriving from IT into a linearly
separable (i.e., untangled) format. Fitting an instantaneous, feed-
forward model of PRH computation that maximally extracted
diagonal signal from our recorded IT responses required us to
develop novel model-fitting procedures. The novel model-fitting
procedures we describe here incorporate non-trivial extensions
to ones we have previously reported (Pagan et al., 2013).

As an overview, the responses of each model PRH neuron
were computed via an LN model as a weighted combination of all
IT neurons, followed by an instantaneous nonlinearity. The input
to the model consisted of the responses of 164 IT neurons to the
16 experimental conditions and the output of the model con-
sisted of 164 model PRH responses to those same conditions.
Model responses were determined for individual trials (i.e., trial-
by-trial variability in our model PRH was inherited from the
recorded IT responses) and the model was fully cross-validated,
meaning that we used 50% of our data to train the model (10
repeats for each condition) and we assessed model performance
using the other half of our data (the other 10 repeats). As de-
scribed in more detail below, we fit the model to the IT responses
at a single time point (e.g., 135 ms) and these parameters were
held fixed for all the other time points. We emphasize that the
model fits are confined to the data recorded from IT and our goal
is to evaluate the degree to which these model response properties
are similar to our recorded PRH data.

Linearly separable target match information amounts to a dif-
ference in the average responses across the set of target matches
compared with the set of distractors (Fig. 6a, red vs gray). To
understand how the model converted nonlinearly separable tar-
get match information into a linearly separable format (i.e., in-
creased mean differences), it is useful to consider the model PRH
neurons as three classes (Fig. 6a). First, a single-model PRH neu-
ron served to combine and inherit all of the linearly separable
information that already existed in IT (Fig. 6a, left). We deter-
mined the linear weights for this neuron (i.e., the weights to apply
to each IT input neuron before summation) as the optimal linear
target match/distractor discriminant (see Materials and Meth-
ods). The responses for this neuron were then computed by ap-
plying an exponential nonlinearity (e.g., a “soft threshold;”
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Pillow et al., 2008) to the linearly weighted IT responses. The
second class of model PRH neurons “computed” linearly separa-
ble information from the inputs arriving from IT. We deter-
mined the weights for these model neurons using an insight from
our previous work (Pagan et al., 2013), in which we established
that the crucial property that needs to be maximized through
linear weighting is the difference between the variance across the
responses to target matches and distractors in the linearly com-
bined responses (i.e., a high variance for the responses to one set
and a low variance for the other; Fig. 6a, center). Under appro-
priate conditions, these variance differences are transformed into
mean differences via a non-monotonic (i.e., a squaring) nonlin-
earity. We determined the linear weights for these neurons using
a method similar to PCA (i.e., an eigenvector decomposition of
the difference of the covariance matrices for matches and distrac-
tors; see Materials and Methods). The number of these neurons
was set as the number required to capture all the available informa-
tion at the training time point, given the number of degrees of free-
dom in our experiment (see Materials and Methods). The final class
of model PRH neurons served to capture any remaining informa-
tion at different time points (see Materials and Methods).

As described above, the goal of our model was to transform
the maximal amount of nonlinearly separable (i.e., tangled) in-
formation arriving from IT into a linearly separable (i.e., untan-
gled) format within the class of models we were working with
(i.e., the n-wise LN model). Because the representation arriving
from IT changes its content with time (as elaborated below), this
required us to select a specific time window for the optimization.
To do so, we began by making the reasonable assumption that
connectivity between IT and PRH was established for this task
during the experience of looking for targets, and we thus looked
to the learning literature to guide our selections. We selected the
width of our spike count window, 25 ms, to fall within the range
of integration times over which synaptic plasticity is thought to
occur (Froemke and Dan, 2002). We then explored different po-
sitions for this window relative to stimulus onset. Training win-
dows placed shortly after total information arrives in PRH, at 75
ms, produced linearly separable target match information with-
out a delay relative to the arrival of total information, but only
increased linear classifier performance by a small amount (i.e.,
this model accounted for 35% of the performance increases ob-
served in PRH over IT; Fig. 6b). This was because the parameters
that were optimal for these early time windows failed to general-
ize to later time points where the IT representation differs (de-
scribed in more detail below). Training windows placed later, at
135 ms, produced larger overall increases in linearly separable
information (i.e., this model accounted for 86% of the increases
observed in PRH over IT; Fig. 6c). However, this information was
delayed relative to the arrival of total information. This is because
the parameters appropriate for extracting linearly separable in-
formation at these later times failed to generalize to earlier times.
These results suggest that processing speed and information con-
tent trade off one another in PRH due to the dynamic nature of
input arriving from IT.

Strikingly, the model PRH produced by training at the later
time point of 135 ms had many response properties similar to the
actual PRH. Most notably, the magnitude of the delay between
the arrival of total and linearly separable information was similar
between the model and the actual PRH (for a criterion of 0.65,
actual PRH " 11.9 ms, model " 13.8 ms; Fig. 6c). The model also
approximately reproduced many other notable and subtle prop-
erties of the actual PRH responses that were also not directly
fit during the optimization. These include the approximate

amounts and time courses of the increases in diagonal modula-
tion from IT to PRH (Fig. 6d, red), the decreases in visual mod-
ulation from IT to PRH (Fig. 6d, gray), and the existence of the
working memory modulation before the stimulus-evoked re-
sponse (persistent activity; Fig. 6d, cyan). We note that slightly
lower overall ideal observer and linear classifier performance in
the model compared with the actual PRH (Fig. 6c, red and gray
solid thick versus thin lines) is partially imposed by slightly lower
ideal observer performance in the input to the model, IT (Fig. 6c,
gray dotted line) coupled with the constraint that the model can-
not artificially create information.

We emphasize that in our model, delays in the arrival of lin-
early separable relative to total target match information result in
large part from computations that are implemented in PRH in-
stantaneously (i.e., without a delay). How could this be possible?
Our model works as follows. Shortly after the onset of a test
stimulus (!25 ms; Fig. 6d, gray dotted line), visual signals have
not yet arrived in IT and working memory signals exist in isola-
tion; these working memory signals are passed on to PRH. Be-
cause computing the target match signal requires both visual and
cognitive signals, total target match information is absent in both
IT and PRH at this time. Sometime later (!75 ms; Fig. 6d, gray
dashed line), stimulus-evoked visual signals arrive in IT, which in
turn passes both visual and cognitive information to PRH, and
total target match information is present in both areas. However,
little diagonal signal is created in PRH because the specific con-
tents of the visual and cognitive inputs arriving from IT are mis-
aligned with the biophysical parameters of the PRH neurons (i.e.,
the synaptic weights), which have been optimized to produce
diagonal signals at a later time. Consequently, little untangled
target match information exists in PRH. As time passes (!135
ms; Fig. 6d, gray solid), the specific content of the IT representa-
tion becomes aligned to the fixed PRH biophysical parameters (as
elaborated below), and diagonal signals are created, thus produc-
ing a more linearly separable, untangled target match represen-
tation in PRH.

The IT representation exhibits many different types of non-
stationarities
The results presented above suggest that the delays between the
arrival of total and linearly separable target match information in
PRH must somehow arise from computations performed on an
input representation from IT that changes its content over time
(i.e., is non-stationary) and thus we wished to better understand
the specific types of non-stationarities that existed in IT. One
useful, albeit broad, definition of “non-stationarity” is any
change in the neural population response other than an overall
rescaling. In fact, if the IT modulations were simply rescaled at
different points in time (i.e., relative to 135 ms), our model of
PRH would not exhibit delays between total and linearly separa-
ble information (as shown later in Fig. 9b). More narrowly, non-
stationarities can arise from two conceptually distinct factors.
First, non-stationarities can arise from changes in the distribu-
tion of information across the neural population over time
(“modulation non-stationarities”). For example, information
can be carried by different subsets of neurons at different times,
due to variability in the response latencies across a population.
Consequently, the synaptic strengths appropriate for creating an
untangled target match signal at one time point can fail to gener-
alize to other time points in which different IT neurons carry
information (Fig. 7a). Second, non-stationarities can arise from
changes in the selectivity of individual neurons for the specific
components that combine to form the overall modulation enve-
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lope (“code non-stationarities”). Similar to the potential impact
of modulation non-stationarities, the potential impact of code
non-stationarities is an inability to generalize the biophysical param-
eters that are appropriate for creating an untangled target match
signal at one time point to different points in time (Fig. 7b).

Measuring code non-stationarities for different types of sig-
nals (e.g., visual vs cognitive) required us to develop a way to
measure the rank-order selectivity for different visual versus cog-
nitive components of the signal at different points in time. We
note that this cannot be achieved by simply measuring the rank-
order selectivity preferences for the 16 different experimental
conditions because each condition is a combination of both vi-

sual and cognitive information (i.e., a combination of the current
visual stimulus and the current target). To parse these signals, we
developed a method to linearly transform each neuron’s 16 entry
response matrix into 16 different “component” responses where
3 of the components describe the visual response, 3 components
describe the working memory response, 1 component describes
the diagonal response, 8 components describe the non-diagonal
cognitive responses, and a final component corresponds to the
neuron’s grand mean firing rate (Fig. 7b, bottom; see Materials
and Methods, Eqs. 7, 8). Together, these components form an
orthonormal basis and, thus, this procedure is similar to a PCA,
but instead of finding the stimulus dimensions that account for
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the most variance, we assign the dimensions a priori to capture
intuitive, task-relevant components of a neuron’s response, and
determine the amount of firing rate modulation along each di-
mension (see Materials and Methods, Eqs. 8, 9). Notably, the
different components combine to form the signal modulation
envelopes depicted in Figure 4, a and b (e.g., the 3 visual compo-
nents combine to determine the visual signal modulation enve-
lope; see Materials and Methods, Eq. 8).

Figure 8 includes a visualization of IT component and code
non-stationarities (similar to that by Brincat and Connor, 2006)
analyzed separately for the cognitive (Fig. 8a) and visual (Fig. 8b)
signals. In these plots, rows correspond to the responses of indi-
vidual neurons, plotted as a function of time relative to stimulus
onset. The modulation envelope for each neuron is depicted by
brightness (black to bright), and neurons are ranked by the times
at which the peaks of their envelopes fell. Modulation non-
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stationarities are thus indicated by changes in the brightness pat-
terns between two columns of the plot. As illustrated by the
considerable change in the subpopulations of neurons that were
active at (e.g.) 75 versus 135 ms (orange lines), modulation non-
stationarities were present in both the visual and cognitive signals
in IT. This can also be seen by examining the modulation enve-
lopes for four example neurons with a variety of latencies and
peak response times (Fig. 8a,b, left).

In contrast, the degree of code non-stationarity for each neu-
ron (relative to 135 ms) is indicated in these plots by color, with
stationary responses indicated in yellow and non-stationarities
indicated in blue. To measure code non-stationarities, we com-
pared each neuron’s selectivities for the different components at
135 ms with its selectivities at every other time point, and we
determined the probability (the p-value) that changes in selectiv-
ity were due to trial-by-trial variability (see Materials and Meth-
ods). As illustrated by the presence of blue in these plots (Fig.
8a,b, center), code non-stationarities were present in both the
cognitive and the visual signals. Example neurons with visual and
cognitive codes that were both stationary and non-stationary are
shown (Fig. 8a,b, right).

Code non-stationarities in IT are the largest contributors to
PRH model dynamics
The analysis presented above suggests that many different types
of non-stationarities exist in IT (i.e., modulation and code non-
stationarities for both visual and cognitive signals); to what de-
gree did the dynamics of our PRH model depend on each type?
To evaluate this question, we performed a series of pseudosimu-
lations in which we manipulated our recorded IT responses such
that one or more types of signals were artificially made stationary,
and we quantified the delays that remained between total and
linearly separable information in our model of PRH. For exam-
ple, to quantify delays due to modulation non-stationarities, we
manipulated the data such that the selectivity to code compo-
nents for all neurons was perfectly stationary relative to the 135
ms time point used to train the model, while preserving any mod-
ulation non-stationarities that existed in the data (see Materials
and Methods, Eqs. 20 –22). Similarly, to quantify the delays due
to code non-stationarities, we enforced the modulation signals to
be perfectly stationary by adjusting the relative contribution of
each neuron (i.e., the magnitude of the envelope for each type of
modulation) at every time slice to match the 135 ms reference
time slice, while preserving any code non-stationarities that ex-
isted in the data (see Materials and Methods, Eqs. 20 –22). Nota-
bly, the impact of both types of pseudosimulation was confined
to the format of the signal components (by changing their distri-
bution across neurons or the code selectivity within individual
neurons), and never modified the total amount of any type of
signal modulation across the population at any time slice. The
results of these simulations revealed that many different types of
non-stationarities contribute to the delays between the arrival
of total and linearly separable information in our model of
PRH, with the cognitive and code non-stationarities being the
largest contributors (Fig. 9). The fact that visual non-
stationarities exist in IT (Fig. 8b) but do not provide a sizable
contribution to the delays we observe in our model (Fig. 9d)
can be explained by the fact that ideal observer performance
relies on a combination of visual and cognitive signals (Eqs.
13–15), and because cognitive signals are smaller, their non-
stationarities play a larger role (e.g., they serve as a “bottle-
neck” for model computation).

Discussion
One of the biggest challenges in studying a high-level brain area
like PRH is parsing the response properties that have been “in-
herited” from its inputs from those response properties that are
“computed” at that stage, and our findings demonstrate that
these determinations need to be made carefully. Here we illus-
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Figure 9. Impact of IT non-stationarities on the untangling dynamics of a model of PRH. To
determine the effect that different types of IT non-stationarities might have on the dynamics of
the target match representation in PRH, we performed a series of pseudosimulations in which
we selectively imposed that one or more types of IT signals were perfectly stationary while
leaving the others untouched, and we measured the delay that remained between ideal ob-
server and linear classifier performances computed from the manipulated model PRH re-
sponses. a, The PRH model with no signal manipulation, but with Poisson trial-by-trial
variability regenerated for IT (see Materials and Methods; compare with the actual data in Fig.
3). b, Manipulating all IT signals to become stationary nearly eliminates the delay in PRH. c–f,
Contribution of the following types of IT non-stationarities to the delay observed in the PRH
model, measured by making all other types of signals stationary: c, cognitive (both code and
modulation), d, visual (both code and modulation), e, modulation (both visual and cognitive),
and f, code (both visual and cognitive).
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trate that the target match signals found in PRH are well de-
scribed as arising from computations implemented in PRH that
act on inputs arriving from IT. Somewhat counterintuitively,
these signals evolve dynamically within PRH but can be ac-
counted for by instantaneous PRH computation. This is because
the inputs from IT change their content over time, and thus the
biophysical parameters (e.g., synaptic weights) that are optimal
for extracting diagonal signals at a time that maximizes information
content (i.e., 135 ms following stimulus onset) fail to generalize to
earlier times where the IT representation differs (e.g., 75 ms).

If changes in the IT target match representation over time were
simply due to rescaling (i.e., gradual increases in signal modulation
magnitudes produced by stimulus-evoked responses), our model of
PRH would fail to reproduce the dynamics that we observe in our
PRH data (Fig. 9b). Rather, we find that our recorded IT re-
sponses reflect multiple types of non-stationarities that combine
to produce dynamic computation in PRH (Fig. 9c–f). The types
of non-stationarities we describe are not exotic. Specifically, the
“modulation” non-stationarity that we describe arises in large
part from a diversity of latencies across the IT population, and
this type of latency diversity has been documented in many dif-
ferent visual brain areas (Schmolesky et al., 1998). Similarly, neu-
rons that do not simply rescale their response selectivity as a
function of time following stimulus onset are also well docu-
mented, particularly in IT (Eskandar et al., 1992; Chelazzi et al.,
1993; Sugase et al., 1999). What our results demonstrate is that
these commonly observed response dynamics can produce seem-
ingly dynamic computation downstream; or conversely, that ob-
serving the dynamic evolution of a signal at one stage of
processing should not immediately be attributed to delays in the
mechanisms used to compute it (e.g., its implementation in com-
plex, recurrent circuits).

To establish our main effect—a delay between the arrival of
total versus linearly separable information in PRH—we compare
the performances of two types of readout rules applied to the data
collected from PRH (i.e., an ideal observer and an SVM linear
classifier; Fig. 3a– c). We also compare the performances of a
linear and a nonlinear classifier with matched structure and num-
ber of parameters (Fig. 3d), and these two classifiers are very
similar to our model of PRH computation (i.e., here we envision
computation in PRH as a nonlinear readout of IT; Fig. 6). This
classification scheme—which is analogous to the first two terms
of a polynomial expansion of the optimal classifier boundary—is
related to others that have previously been proposed, but it does
not directly correspond to any that we are aware of. In particular,
although other classification methods (e.g., quadratic discrimi-
nant analysis and quadratic kernel SVM) also rely on covariance
differences to compute a decision boundary, they are not explic-
itly formulated in terms of an LN cascade of operations, whereas
our method specifies an intermediate population of biologically
plausible LN units, upon which a linear readout could be applied.
Notably, when we apply classifiers to the data collected from PRH
(Fig. 3), we apply them in a manner that might be regarded as a
“dynamic” readout (i.e., we allow the parameters to vary between
time bins), whereas when we use these classifiers as models of
PRH computation (Fig. 6), we enforce that the readout be “static”
(i.e., we fit the parameters at a specific time slice). Our rationale
behind this is that we were interested in evaluating the hypothesis
that signals in PRH could be described as arising from a static
computation, and thus we began by quantifying signals in PRH in
the absence of making this assumption, and we then compared
these results with a model of PRH when this assumption was
enforced. Stated differently, here we first present the classifier

analyses merely as quantification tools (Fig. 3), and then we pro-
ceed to evaluate one as a model of PRH computation (Fig. 6).

It is also worth noting that our model is “functional” and,
similar to other functional models (Adelson and Bergen, 1985;
Rust et al., 2006), it is designed to capture neural computation in
an interpretable manner. To clearly describe how PRH might com-
pute linearly separable information arriving from IT, our model
separates those signals from the ones that are inherited from IT by
parsing them into different model PRH neurons (Fig. 6a). We note
that it is highly unlikely that the brain separates signals in the same
way. Rather, the responses of actual PRH neurons likely reflect a
combination of both inherited and computed linearly separable tar-
get match signals using mixtures of the mechanisms used in our
model for different “classes” of neurons.

In developing our model of PRH, we assumed that the task-
relevant connections between IT and PRH were learned, and we
used this assumption to guide our selections of the spike count
window width (25 ms) and its placement (135 ms following stim-
ulus onset). How reasonable are these assumptions? Although
little is known about the specific mechanisms that regulate syn-
aptic plasticity in PRH during complex cognitive tasks, neural
plasticity during reinforcement learning is thought to be largely
regulated by dopaminergic inputs (for review, see Schultz, 2007),
and we know that PRH contains high densities of both
dopamine-carrying fibers and dopamine receptors (for review,
see Richmond, 2006). Consistent with a specific training window,
some have hypothesized that a phasic dopamine response could
serve to “switch on” learning at a precise time following stimulus
onset (Redgrave and Gurney, 2006; Redgrave et al., 2008). Thus,
although much remains to be discovered about synaptic plasticity
in PRH, our assumptions are consistent with our current under-
standing of those mechanisms.

In agreement with earlier reports (Eskandar et al., 1992;
Chelazzi et al., 1993, 1998), our results suggest that during visual
target search tasks, the IT representation is non-stationary; how
do these non-stationarities arise in IT? Possibly from multiple
sources. First, visual non-stationarities have been reported previ-
ously in IT under conditions of passive viewing (Sugase et al.,
1999), suggesting that cognitive (i.e., working memory) signals
are not the only contributors. Second, IT non-stationarities may
be produced via the mechanisms that combine visual and work-
ing memory information within or before IT in the ventral visual
pathway. A series of studies documented non-stationarities
within V4, IT, and PRH as monkeys performed a target search
task in which they had to find targets among sets of multiple
stimuli (Chelazzi et al., 1993, 1998, 2001). The authors proposed
that target-specific working memory signals may exert their in-
fluence via a top-down bias to IT (and/or V4) neurons, followed
by competitive interactions within IT that enhance the responses to
target stimuli and suppress the response to distractors (Desimone
and Duncan, 1995). Finally, cognitive non-stationarities may be “in-
herited” from prefrontal cortex where the persistent, working mem-
ory representations of target identity are thought to be housed
(Miller et al., 1996), but individual prefrontal neurons are reported
to respond only transiently during some fraction of the memory
period (Brody et al., 2003; Machens et al., 2010). As our results dem-
onstrate, regardless of their source, non-stationarities in IT have im-
portant consequences for downstream computation.

Finally, we note that our report includes a number of meth-
odological advancements in data analysis and model fitting that
may be useful for other studies. First, we apply a method to quan-
tify the amounts of different types of task-relevant signals con-
tained within heterogeneous and difficult to understand brain
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areas like IT and PRH (Figs. 4, 5; elaborated in the work by Pagan
and Rust, 2014). In our study, this provided an important con-
straint for our model PRH (Fig. 6) and allowed us to quantify
multiple types of non-stationarities in IT (Figs. 8, 9). Second, we
introduce derivations that connect these single-neuron measures
with population-based analyses (Fig. 4c). This allowed us to de-
termine the underlying neural signal dynamics that gave rise to
dynamics in the population-based classifier performance mea-
sures (Fig. 4b,c). Finally, we introduce a means of “leapfrogging”
over a considerable amount of neural processing that we do not
understand to determine the computations performed in a high-
level brain area (i.e., determining computation in PRH in the
absence of a model of processing up to and including IT). We
achieved this by fitting an LN model to our recorded IT responses
to produce a model PRH that we compared with our PRH data
(Fig. 6). Whereas our previous attempts at fitting such models
were constrained to brute-force searches of simple (pairwise) LN
combinations, here we used an insight from our previous work
(Pagan et al., 2013) to fit a more realistic model in which larger
numbers of IT neurons combine to form the responses of neu-
rons in PRH.

References
Adelson EH, Bergen JR (1985) Spatiotemporal energy models for the per-

ception of motion. J Opt Soc Am A 2:284 –299. CrossRef Medline
Averbeck BB, Lee D (2006) Effects of noise correlations on information

encoding and decoding. J Neurophysiol 95:3633–3644. CrossRef Medline
Bichot NP, Rossi AF, Desimone R (2005) Parallel and serial neural mecha-

nisms for visual search in macaque area V4. Science 308:529 –534.
CrossRef Medline

Brincat SL, Connor CE (2006) Dynamic shape synthesis in posterior infero-
temporal cortex. Neuron 49:17–24. CrossRef Medline

Brody CD, Hernández A, Zainos A, Romo R (2003) Timing and neural
encoding of somatosensory parametric working memory in macaque pre-
frontal cortex. Cereb Cortex 13:1196 –1207. CrossRef Medline

Chelazzi L, Miller EK, Duncan J, Desimone R (1993) A neural basis for
visual search in inferior temporal cortex. Nature 363:345–347. CrossRef
Medline

Chelazzi L, Duncan J, Miller EK, Desimone R (1998) Responses of neurons
in inferior temporal cortex during memory-guided visual search. J Neu-
rophysiol 80:2918 –2940. Medline

Chelazzi L, Miller EK, Duncan J, Desimone R (2001) Responses of neurons
in macaque area V4 during memory-guided visual search. Cereb Cortex
11:761–772. CrossRef Medline

Churchland MM, Yu BM, Cunningham JP, Sugrue LP, Cohen MR, Corrado
GS, Newsome WT, Clark AM, Hosseini P, Scott BB, Bradley DC, Smith
MA, Kohn A, Movshon JA, Armstrong KM, Moore T, Chang SW, Snyder
LH, Lisberger SG, Priebe NJ, et al. (2010) Stimulus onset quenches neu-
ral variability: a widespread cortical phenomenon. Nat Neurosci 13:369 –
378. CrossRef Medline

Desimone R, Duncan J (1995) Neural mechanisms of selective visual-
attention. Annu Rev Neurosci 18:193–222. CrossRef Medline

Efron B, Tibshirani RJ (1994) An introduction to the bootstrap. Boca Raton,
CRC.

Eskandar EN, Richmond BJ, Optican LM (1992) Role of inferior temporal
neurons in visual memory. 1. Temporal encoding of information about
visual images, recalled images, and behavioral context. J Neurophysiol
68:1277–1295. Medline

Froemke RC, Dan Y (2002) Spike-timing-dependent synaptic modification
induced by natural spike trains. Nature 416:433– 438. CrossRef Medline

Geisler WS, Albrecht DG (1997) Visual cortex neurons in monkeys and cats:
detection, discrimination, and identification. Vis Neurosci 14:897–919.
CrossRef Medline

Gibson JR, Maunsell JHR (1997) Sensory modality specificity of neural ac-
tivity related to memory in visual cortex. J Neurophysiol 78:1263–1275.
Medline

Haenny PE, Maunsell JHR, Schiller PH (1988) State dependent activity in
monkey visual-cortex. 2. Retinal and extraretinal factors in V4. Exp Brain
Res 69:245–259. CrossRef Medline

Liu Z, Richmond BJ (2000) Response differences in monkey TE and perirhi-
nal cortex: stimulus association related to reward schedules. J Neuro-
physiol 83:1677–1692. Medline

Machens CK, Romo R, Brody CD (2010) Functional, but not anatomical,
separation of ”what” and ”when” in prefrontal cortex. J Neurosci 30:350 –
360. CrossRef Medline

Maunsell JHR, Sclar G, Nealey TA, DePriest DD (1991) Extraretinal repre-
sentations in area-V4 in the macaque monkey. Vis Neurosci 7:561–573.
CrossRef Medline

Miller EK, Desimone R (1994) Parallel neuronal mechanisms for short-
term-memory. Science 263:520 –522. CrossRef Medline

Miller EK, Erickson CA, Desimone R (1996) Neural mechanisms of visual
working memory in prefrontal cortex of the macaque. J Neurosci 16:
5154 –5167. Medline

Pack CC, Born RT (2001) Temporal dynamics of a neural solution to the
aperture problem in visual area MT of macaque brain. Nature 409:1040 –
1042. CrossRef Medline

Pagan M, Rust NC (2014) Quantifying the signals contained in heteroge-
neous neural responses and determining their relationships with task
performance. J Neurophysiol, in press. CrossRef Medline

Pagan M, Urban LS, Wohl MP, Rust NC (2013) Signals in inferotemporal
cortex and perirhinal cortex suggest an untangling of visual target infor-
mation. Nat Neurosci 16:1132–1139. CrossRef Medline

Pillow JW, Shlens J, Paninski L, Sher A, Litke AM, Chichilnisky EJ, Simoncelli
EP (2008) Spatio-temporal correlations and visual signalling in a com-
plete neuronal population. Nature 454:995–999. CrossRef Medline

Poor HV (1994) An introduction to signal detection and estimation. New
York: Springer.

Redgrave P, Gurney K (2006) The short-latency dopamine signal: a role in
discovering novel actions? Nat Rev Neurosci 7:967–975. CrossRef
Medline

Redgrave P, Gurney K, Reynolds J (2008) What is reinforced by phasic do-
pamine signals? Brain Res Rev 58:322–339. CrossRef Medline

Richmond BJ (2006) Dopamine-dependent associative learning of
workload-predicting cues in the temporal lobe of the monkey. In: Plastic-
ity in the visual system: from genes to circuits (Pinaud R, Tremere LA, De
Weerd P, eds), pp 309 –320. New York: Springer.

Rust NC, DiCarlo JJ (2010) Selectivity and tolerance (“invariance”) both
increase as visual information propagates from cortical area V4 to IT.
J Neurosci 30:12978 –12995. CrossRef Medline

Rust NC, Schultz SR, Movshon JA (2002) A reciprocal relationship between
reliability and responsiveness in developing visual cortical neurons.
J Neurosci 22:10519 –10523. Medline

Rust NC, Mante V, Simoncelli EP, Movshon JA (2006) How MT cells ana-
lyze the motion of visual patterns. Nat Neurosci 9:1421–1431. CrossRef
Medline

Schmolesky MT, Wang Y, Hanes DP, Thompson KG, Leutgeb S, Schall JD,
Leventhal AG (1998) Signal timing across the macaque visual system.
J Neurophysiol 79:3272–3278. Medline

Schultz W (2007) Behavioral dopamine signals. Trends Neurosci 30:203–
210. CrossRef Medline

Smith MA, Majaj NJ, Movshon JA (2005) Dynamics of motion signaling by
neurons in macaque area MT. Nat Neurosci 8:220 –228. CrossRef
Medline

Sugase Y, Yamane S, Ueno S, Kawano K (1999) Global and fine information
coded by single neurons in the temporal visual cortex. Nature 400:869 –
873. CrossRef Medline

Treves A, Panzeri S (1995) The upward bias in measures of information
derived from limited data samples. Neural Comput 7:399 – 407. CrossRef

11084 • J. Neurosci., August 13, 2014 • 34(33):11067–11084 Pagan and Rust • Dynamic Target Match Signals in IT and Perirhinal Cortex


