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Pagan M, Rust NC. Quantifying the signals contained in hetero-
geneous neural responses and determining their relationships with
task performance. J Neurophysiol 112: 1584–1598, 2014. First pub-
lished June 11, 2014; doi:10.1152/jn.00260.2014.—The responses of
high-level neurons tend to be mixtures of many different types of
signals. While this diversity is thought to allow for flexible neural
processing, it presents a challenge for understanding how neural
responses relate to task performance and to neural computation. To
address these challenges, we have developed a new method to parse
the responses of individual neurons into weighted sums of intuitive
signal components. Our method computes the weights by projecting a
neuron’s responses onto a predefined orthonormal basis. Once deter-
mined, these weights can be combined into measures of signal modulation;
however, in their raw form these signal modulation measures are
biased by noise. Here we introduce and evaluate two methods for
correcting this bias, and we report that an analytically derived ap-
proach produces performance that is robust and superior to a bootstrap
procedure. Using neural data recorded from inferotemporal cortex and
perirhinal cortex as monkeys performed a delayed-match-to-sample
target search task, we demonstrate how the method can be used to
quantify the amounts of task-relevant signals in heterogeneous neural
populations. We also demonstrate how these intuitive quantifications
of signal modulation can be related to single-neuron measures of task
performance (d=).

orthonormal basis; signal modulation; bias correction

THE RESPONSES OF NEURONS at higher stages of neural processing
in the brain tend to reflect heterogeneous mixtures of many
different types of task-relevant signals (e.g., Bennur and Gold
2011; Brody et al. 2003; Buckley et al. 2009; Miller and
Desimone 1994; Rigotti et al. 2013). This diversity is thought
to be advantageous insofar as a population that contains a
diversity of neural responses is capable of performing a diver-
sity of tasks (Rigotti et al. 2013). However, response hetero-
geneity also makes these high-level brain areas difficult to
understand with classical single-neuron approaches, which
inherently rely on identifying regularities in the response prop-
erties of individual neurons across a population (e.g., discov-
ering that the majority of V1 neurons are tuned for orientation).

Here we present a method to deconstruct the responses of
heterogeneous neurons as weighted sums of intuitive signals.
Our method is useful when applied to experimental designs
that involve changing multiple experimental parameters, which
is of course a prerequisite for uncovering signal “mixtures.”
Examples include tasks that require finding a “match” to a
target, which involves changing the identities of the “stimuli”
and the “target” (e.g., Maunsell et al. 1991; Miller and Desi-

mone 1994; Pagan et al. 2013). Likewise, tasks that require
flexible rule-based mappings of sensory stimuli onto behav-
ioral responses involve manipulating the sensory stimulus and
the rule (e.g., Bennur and Gold 2011; Mansouri et al. 2007). A
slightly less obvious example is a task that requires a subject to
remember the specific sequence with which objects appear; the
different conditions in such a task can be envisioned as com-
binations of object identity and time (Naya and Suzuki 2011).

To address the challenges associated with understanding
how the responses of a heterogeneous neural population reflect
different task-relevant components, we have developed a
method to parse the responses of individual neurons into
weighted sums of intuitive components. Our method computes
the weights by projecting a neuron’s responses onto a pre-
defined orthonormal basis. Once determined, these weights can
then be combined to quantify different types of signal modu-
lation in a manner that does not depend on sign (e.g., firing rate
increases or decreases). From a neural coding perspective, both
firing rate increases and decreases convey information and thus
unsigned modulation measures more accurately reflect signal
magnitude. Additionally, because firing rate increases and
decreases tend to be balanced in many high-level brain areas
(see, e.g., Maunsell et al. 1991; Miller and Desimone 1994;
Romo et al. 1999), the “average” signed modulation across a
population is not a useful quantity (i.e., because it takes on a
value near zero) whereas the “average” unsigned (absolute
valued or squared) modulation is meaningful.

As we describe in detail below, our method is related
to other approaches, including the analysis of variance
(ANOVA), the multiple linear regression (MLR), the principal
components analysis (PCA), and a recent PCA extension
[demixed PCA (dPCA); Machens 2010]. While these methods
have advantages over our method for some applications, one
advantage of our method over the others is that it produces
unsigned and unbiased estimates of signal modulation magni-
tudes. Unbiased signal estimates are important when one wants
to compare signals across brain areas, across different points
in time, or across different types of signals. However, we note
that our method is not ideal for describing exactly “how”
neurons are tuned for a particular parameter (e.g., for describ-
ing tuning curves).

In addition to introducing a new way to measure neural
signals, we demonstrate how these measures can be related to
task performance. Quantifying task performance for individual
neurons by performing a receiver operating characteristic
(ROC) analysis or by calculating the related discriminability
measure d= is a common way to compare neural signals—
between different brain areas, between different points in time
within the same brain area, or with behavior (e.g., Adret et al.
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2012; Bennur and Gold 2011; Gu et al. 2012; Liebe et al. 2011;
Newsome et al. 1989; Swaminathan and Freedman 2012).
Understanding the underlying sources of neural task perfor-
mance differences (e.g., overall firing rate changes vs. changes
in different types of tuning modulation) is crucial for accurate
interpretation of what these differences mean for neural cod-
ing. Here we show how our method can be used to derive a
precise understanding of how task performance depends on
different types of signal modulation.

METHODS

The data we use to describe our method have been reported
previously (Pagan et al. 2013). All procedures were reviewed and
approved by the University of Pennsylvania Institutional Animal
Care and Use Committee. Briefly, we recorded neural responses in
inferotemporal cortex (IT) and perirhinal cortex (PRH) as monkeys
performed a delayed-match-to-sample (DMS), sequential target
search task that required treating the same images as targets and as
distractors on different trials (Fig. 1A). Monkeys initiated a trial by
fixating a small dot, and after a short delay a cue indicating the
target for that trial was presented, followed by a random number

(0 –3) of distractors and then the target match. Monkeys indicated
the presence of the target match by making a saccade to a specific
location on the screen before the onset of the next stimulus and
were rewarded for correct responses. Altogether, four images were
presented in all possible combinations as a visual stimulus (“look-
ing at”) and as a target (“looking for”), resulting in a four by four
matrix, and at least 20 repeated trials of each condition were
collected (Fig. 1B).

Most of our methods are described in RESULTS. Here we describe the
statistical procedures we used to evaluate the statistical significance of
the observed differences in the mean values of various indices be-
tween IT and PRH (see Fig. 5). Because many of these measures were
not normally distributed, we calculated these P values via a bootstrap
procedure. On each iteration of the bootstrap, we randomly sampled
the true values from each population, with replacement, and we
computed the difference between the means of the two newly created
populations. We computed the P value as the fraction of 1,000
iterations on which the difference was flipped in sign relative to the
actual difference between the means of the full data set (e.g., if the
mean for PRH was larger than the mean for IT, the fraction of
bootstrap iterations in which the IT mean was larger than the PRH
mean; Efron and Tibshirani 1994).

−0.7

0

0.7

Orthonormal basis

1 2 3 4

1
2
3
4Lo

ok
in

g 
fo

r

Looking at

C

Cue Distractor

Reward

Target
matchDistractor

Target
matches

Distractors

BA

8: Diagonal2-4: Visual 5-7: Working memory

9-16: Residual

Initial design

8: Diagonal2-4: Visual 5-7: Working memory
1: Grand

mean

9-16: Residual

−1

0

1

D 1: Grand
mean

1 2 3 4

1
2
3
4Lo

ok
in

g 
fo

r

Looking at

Target
matches

Distractors

E

5 6 7 8

Non-orthogonal task design

Fig. 1. Constructing an orthonormal basis for
a delayed-match-to-sample (DMS) task. A:
each trial of the DMS task began with the
presentation of a cue indicating the target for
that trial, followed by the presentation of
0–3 distractors and then the target match.
Images were presented for 400 ms, followed
by a 400-ms blank. Monkeys were required
to maintain fixation throughout the distrac-
tors and saccade to a response dot after the
target match appeared (within 800 ms) to
receive a reward. B: the experimental design
included 4 images, each presented as a visual
stimulus (“looking at”) in the context of
every other image as a target (“looking for”),
thus defining a 4 � 4 matrix. In this matrix,
target matches fall along the diagonal and
distractors fall off the diagonal. C: the ma-
trices produced by the first stage of the or-
thonormal basis design process (see text). D:
the matrices produced by applying the Gram-
Schmidt process to the matrices described in
C. E: an experimental design in which the
“target match” and “visual” conditions can-
not be orthogonalized (see text).
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RESULTS

The methods we describe here are useful for analyzing the
neural data from experiments in which experimental conditions
are combinations of multiple stimulus parameters (e.g., sensory
stimuli combined with different task instructions). Addition-
ally, they can be applied to both parametric variation (e.g.,
systematic changes in motion direction) and nonparametric
variation (e.g., changes in object identity where the relation-
ships between different identities are not well defined). The
ultimate goal of our method is to measure the magnitude by
which a neuron’s responses are modulated by different exper-
imental parameters, and below we refer to these modulation
magnitudes as “signals.” Our method involves parsing a neu-
ron’s firing responses to N different combinations of the
stimulus parameters (i.e., experimental conditions), which we
refer to as a “response matrix,” into a weighted sum of N
intuitively defined signals. This process begins by constructing
an orthonormal basis of N vectors. “Ortho” refers to the fact
that the vectors are “orthogonal,” and this allows the original
matrix to be deconstructed into a weighted sum (i.e., none of
the neural responses is counted twice). “Norm” refers to the
fact that all the vectors have the same length (i.e., the “norm”
of each vector, computed as the square root of the summed
squared values, is equal to 1). “Basis” refers to the fact that,
together, the vectors capture all possible types of response
modulation that could occur given the specific experimental
design. As described in more detail below, once the orthonor-
mal basis is determined, the weights are calculated for each
neuron by taking the projection (i.e., the dot product) of the
neuron’s average firing rate responses and each basis vector
and the “signals” are determined by combining weights of the
same type.

Constructing an orthonormal basis. To construct the basis,
we begin by constructing a set of N vectors that capture the
types of modulation we are interested in. Next we apply the
Gram-Schmidt process to convert the set of vectors into an
orthonormal basis. To describe the method, we apply this
procedure to an example experimental design taken from our
previous work: a DMS target search task (Pagan et al. 2013).
In these experiments, monkeys viewed a series of sequentially
presented images and indicated when a “target match” ap-
peared within a sequence of “distractors” (Fig. 1A). Altogether,
monkeys viewed each of four visual images in the context of
each image as a target, resulting in a four-by-four matrix of
experimental conditions (Fig. 1B). In this matrix, target
matches fall along the diagonal and distractors fall off the
diagonal. This “response matrix” R is computed as the average
spike count response across 20 repeated trials for each of the 16
experimental conditions. Below, we treat R as a 16-entry
vector to perform our calculations.

To design an orthonormal basis for this task, we began by
constructing a first vector that corresponds to the grand mean
spike count response across all conditions; all entries in this
vector take on the same, constant value (e.g., 1/16; Fig. 1C).
The remaining vectors are designed to capture the types of
modulation that neural responses might reflect, which follow
from the task design. In the case of our experiment, this
included three vectors to describe the visual modulation, re-
flected by columns in the response matrix (Fig. 1C). Notably,
while there are four different visual images, only three are

required to capture the visual modulation once the mean firing
rate response has also been defined (i.e., degrees of freedom for
the visual conditions � 4 � 1). The second type of modulation
is reflected by rows in this matrix and corresponds to response
modulations that can be attributed to changing the identity of
the target; because target identity must be held in working
memory during this task, we refer to this as “working memory”
modulation. The third type of modulation differentiates
whether a condition was a target match or a distractor, and this
corresponds to modulation along the diagonal. The final type of
modulation is that which is required to describe responses that
are “peppered” across the matrix, such as differential responses
to the same visual image under two different distractor condi-
tions, and we refer to this modulation as “residual.” More
technically, residual modulations reflect all nonlinear combi-
nations of visual and working memory signals that are not
diagonal.

Once this initial set of vectors is defined, we apply the
Gram-Schmidt procedure to convert it into an orthonormal
basis. Specifically, we define each of the N original vectors as
vi and each of the vectors of the resulting orthonormal basis as
bi. The Gram-Schmidt process is applied iteratively to each
initially defined vector, and consists of two stages: first, the
vector is orthogonalized relative to all the vectors already
incorporated into the final, orthonormal basis, and second, the
resulting vector is normalized by its norm ||bi||:

bi � vi � �vi
T · b1� · b1 � �vi

T · b2� · b2 � · · · ��vi
T · bi�1� · bi�1 (1)

bi �
bi

�bi�
; �bi� � ��

j
bij

2
(2)

where bij indicates the jth element of the ith vector bi.
The final orthonormal basis obtained for our experiment is

shown in Fig. 1D. A crucial requirement is that the originally
defined vectors v1 . . . vN span the full space; if this is not the
case, the Gram-Schmidt process will fail to produce a valid
orthonormal basis. It is possible to verify this simply by
measuring the rank of the matrix obtained by juxtaposing the
original vectors [v1 . . . vN] and checking that it is equal to N.

There is no unique way to parse a set of N vectors into an
orthonormal basis. For example, one might consider the “stan-
dard basis” as the set of vectors that define each experimental
condition (e.g., 10000, 01000, 00100, etc.). While this basis is
orthonormal, it is not very useful because a projection of a
neuron’s responses R onto this basis would simply return the
mean firing rate response to each experimental condition (i.e.,
each entry in R). Decisions about how to create the initial
vectors when designing the basis depend on what one is trying
to achieve. We often find it useful to begin by considering the
task “inputs” and whether the task “output” (i.e., the solution)
can be expressed as a linear or nonlinear combination of the
inputs, because this approach formalizes the mapping between
the computational goals of the task and the neural signals. For
the DMS task described above, the task inputs include “visual”
and “working memory” signals (i.e., the monkey is presented
with the identity of the target, which he holds in working
memory, and the identity of the visual image). These are
equivalent to the “linear terms” of a two-factor ANOVA
analysis. The solution for this task—differentiating whether
each condition is a target match or a distractor (i.e., the
diagonal matrix)—cannot be expressed by any linear combi-
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nation of inputs but instead requires a nonlinear computation.
However, it is only one of many possible nonlinear vectors,
and it is thus essential to parse it from the “residual” vectors,
which also reflect nonlinear combinations of visual and work-
ing memory signals. We note that “diagonal” and “residual”
signals would be combined into a single “nonlinear interaction
term” in a two-factor ANOVA (for a more extensive descrip-
tion of the relationship between the orthonormal basis and the
ANOVA, see DISCUSSION).

Not all experimental designs allow for orthogonalization, or
equivalently, not all experimental parameters can be orthogo-
nalized. For example, Fig. 1E depicts a modified experimental
design in which some visual images are always presented as
distractors and never as targets. In this case, there is no way to
produce a component that captures “target match” signals (e.g.,
one that reflects tuning for whether a condition is a target
match or a distractor) that can be orthogonalized with the
“visual” components. This is because the experimental design
introduces a correlation between image identity and whether
the condition is a target match: once you know that the identity
of an image is 5, 6, 7, or 8, you know with certainty that the
image is a distractor. Stated differently, in this experimental
design “target match” and “visual” signals are confounded.
Thus an additional advantage of our method is that it intro-
duces a means to evaluate and improve a candidate experimen-
tal design through the attempted construction of a useful
orthonormal basis.

Computing and interpreting signal modulation magnitudes.
Once the orthonormal basis has been defined, we can compute
the corresponding signal modulation magnitudes. A neuron’s
response matrix R can always be decomposed into a weighted
sum of the orthonormal components:

R � �
i�1

16

wi · bi (3)

where bi indicates the ith component and wi indicates the
weight associated with the ith component. The weights wi are
thus determined by computing the projection (i.e., the dot
product) of the vector R and each basis component bi:

wi � R · bi
T (4)

Ultimately, we are interested in quantifying how much of a
neuron’s firing rate modulation can be attributed to changes in
specific type of experimental manipulation (e.g., the amount of
firing rate modulation that can be attributed to changes in the
visual stimulus), and thus we need to group together weights
that correspond to the same type (e.g., the 3 visual weights).
When doing so, it is important to consider that these weights
can be negative as well as positive. Positive weights corre-
spond to neural responses that directly resemble an orthonor-
mal basis component, whereas negative weights correspond to
neural responses that are simply flipped in sign and thus they
also reflect relevant firing rate modulations. To convert a set of
weights into a measure of a particular type of modulation, we
square the weights, sum across the set, and then take the square
root. For the DMS task:

Mvis � � �
i�vis

wi
2 ; Mwm � � �

i�wm
wi

2 ;

Mdiag � �wdiag� ; Mresidual � � �
i�residual

wi
2 (5)

where Mvis is the amount of visual modulation, Mwm is work-
ing memory modulation, Mdiag is diagonal modulation, and
Mresidual is residual modulation. When computed this way, each
type of signal modulation measures the standard deviation (i.e.,
the spread) of the responses, averaged across repeated trials,
and has units of spike count. For example, a “visual signal
equal to 2” means that the trial-averaged spike count was
spread two standard deviations around the grand mean firing
rate as a result of changes in the visual stimulus.

Next we introduce three different ways to normalize these
signal modulation magnitudes, each designed to highlight a
different aspect of signal modulation. First, one might wish to
produce signal modulation measures that are not “raw” (Eq. 5)
but instead are compared to the amount of noise. This type of
“signal-to-noise” modulation measure can be obtained by sim-
ply normalizing by the average trial-by-trial variability of a
neuron:

M 'vis � Mvis ⁄ ��noise ; M 'wm � Mwm ⁄ ��noise ;
M 'diag � Mdiag ⁄ ��noise; M 'residual � Mresidual ⁄ ��noise (6)

where ��noise is computed as

��noise �� 1

16
· �

i�1

16

�i,noise
2 (7)

and �i,noise
2 indicates the trial-by-trial variability (variance)

associated with the ith condition. In this formulation, modula-
tions are unitless and they measure the ratio between the signal
and noise modulations. For example, a “visual signal equal to
2” now means that changes in the visual signal produced a
spread in the trial average spike counts with a standard devi-
ation twofold larger than the standard deviation of the noise.
To anticipate and prevent confusion, we note that the issue of
whether a signal modulation estimate is biased by noise is
distinct from the issue of normalizing the size of the signal
relative to the size of the noise; the former is related to the issue
of getting an accurate estimate of signal size (discussed below),
whereas the latter informs how much a given amount of signal
will be actually “useful” at conveying information. In other
words, a fixed amount of signal can provide perfect informa-
tion in the absence of noise, or it can be almost impossible to
detect within a very large amount of noise.

As a second consideration, we note that in some situations,
including the DMS task, different types of signals have differ-
ent numbers of components and it may be desirable to normal-
ize by the number of components to arrive at a measure of
modulation “per degree of freedom”:

Mvis �� 1

Nvis
· �

i�vis
wi

2 ; Mwm �� 1

Nwm
· �

i�wm
wi

2 ;

Mdiag � �wdiag� ; Mres �� 1

Nres
· �

i�res
wi

2 (8)

where Nvis indicates the number of visual components (� 3),
Nwm indicates the number of working memory components (�
3), and Nres indicates the number of residual components (�
8). For example, a “visual signal equal to 2” now means that
each visual component was (on average) responsible for
spreading the trial-averaged spike count two standard devi-
ations around the grand mean. This normalization can also
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be combined with the noise normalization in Eq. 6 to
produce a measurement of the signal-to-noise ratio per
component.

Finally, one might wish to produce a measure of signal
modulation that is affected by changes in the “pattern” of
the response matrix but not by an overall rescaling of the
firing rates, whereas in their raw form signal modulations
(Eq. 5) are directly proportional to the overall grand mean
firing rate. Scale-invariant modulation measures can be
computed by normalizing each type of signal modulation by
the grand mean response to produce quantities that we refer
to as “signal strengths.” This normalization is described in
more detail in Relating signal modulations and task
performance.

To illustrate an example of signal modulations, Fig. 2 shows
the result of our method applied to six neurons collected during
the DMS task, including three neurons whose responses reflect
relatively pure selectivity for signals of a single type (Fig. 2,
top) and three neurons whose responses reflect mixtures of
different types of signals (Fig. 2, bottom). Shown in Fig. 2 are
the response matrices for each neuron (Fig. 2, left) and the top
five orthonormal components rescaled by their weights (Fig. 2,
center). As described above, weights can be positive or nega-
tive and negative weights invert the polarity of the orthonormal
component (e.g., compare the diagonal matrices in the 3rd and
6th rows of Fig. 2). Also shown in Fig. 2 are the signal
modulations computed as the square root of the summed,
squared weights for each type of signal, normalized by the
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Fig. 2. Example neurons. Each row depicts a
single example neuron, where the responses
of the top 3 neurons reflect relatively pure
selectivity and the responses of the bottom 3
neurons reflect mixtures of different selectiv-
ity types. Left: the mean spike count re-
sponses computed within a window 50–250
ms after stimulus onset to each of the 16
conditions (the “response matrix”), averaged
over 20 repeated trials, normalized to range
from the minimum (black) to the maximum
(white). Center: the orthonormal components
with the 5 largest weights, plotted as shown
in Fig. 1D but with intensity scaled by the
weight applied to each component. The re-
sponse matrix can be reconstructed as a
weighted sum of these matrices (once the
grand mean spike count is also factored in,
which is not shown). Right: the temporal
evolution of the closed-form bias-corrected
signal modulation magnitudes for each type
of signal, computed as the square root of the
sum of squares of the bias-corrected weights
normalized by the number of components for
each signal type (Eq. 8). To perform this
analysis, spikes were counted in 50-ms slid-
ing windows shifted 1 ms for each successive
time bin. The example neuron depicted in the
4th row was recorded in inferotemporal cor-
tex (IT); the other neurons were recorded in
perirhinal cortex (PRH).
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number of components for each signal type (Fig. 2, right; Eq.
8). To produce these plots, response matrices were computed
by counting spikes in 50-ms windows systematically shifted
relative to response onset. Signal modulations are computed by
squaring the weights, so that both positive and negative
weights contribute equally to measured modulations. Signal
modulations thus provide an intuitive quantification of “how
much” of a particular type of signal is reflected in the responses
of a particular neuron, regardless of the “sign” of that weight
(i.e., responses increases or decreases) and regardless of “how”
that modulation is distributed across the different components
(i.e., tuning). Importantly, computing modulations in this way
is biased (Figs. 3 and 4), and this bias must be corrected for to
get an accurate measure of modulation (as described below).

As highlighted above, an orthonormal basis is not uniquely
defined for a given experimental design. This statement also
applies to subsets of different types of components—for ex-
ample, one could define an orthonormal basis with “visual”
vectors that are different from those presented in Fig. 1D but
capture the visual modulations equally well because the three
new visual vectors will define the same linear subspace as the
original vectors. Thus the combined projection of a neuron’s
response vector onto the three visual components uniquely
captures the amount of modulation that can be attributed to
changes in the identity of the visual stimulus even if the
specific visual vectors themselves are not uniquely defined.
Under what situations is a particular type of signal modulation
uniquely defined? In our experiment, the uniquely defined
parsing of different signal types follows from the two-dimen-
sional “looking at”/“looking for” matrix structure of this task,

in which the “visual” and “working memory” conditions are
presented in all possible combinations and are thus indepen-
dent from one another (Fig. 1B). Similarly, because the diag-
onal matrix is a single dimension, it is also uniquely defined.
Finally, the “residual” subspace is uniquely defined because it
describes everything that remains after the other uniquely
defined subspaces have been accounted for. In contrast, if we
were to, for example, combine the first visual, the first working
memory, and the first residual dimension into a measure of
signal modulation, we would obtain a subspace that is strictly
dependent on the particular choice of basis, i.e., a different
orthonormal basis would produce a different linear subspace
when the same three components are considered.

Bias and bias correction. When estimating the amount of
modulation in a signal, noise and limiting sampling size are
known to introduce a positive bias (Panzeri et al. 2007). For
example, consider a hypothetical neuron that responds with the
exact same average firing rate response to each of a set of
experimental conditions. Because neurons are noisy, if we
were to estimate these mean rates on the basis of a limited
number of repeated trials, we would get different values for
different conditions and this could lead to the erroneous im-
pression that the neural responses are in fact modulated by the
stimuli. Similarly, applying the orthonormal basis method to
this data would produce weights shifted away from zero as a
result of noise for at least a subset of the basis vectors. While
the mean of the weights themselves would be unbiased (be-
cause noise would shift the weights to both more positive and
more negative values), the process of converting the weights
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Fig. 3. Empirical demonstration of bias. Raw (dotted)
and closed-form bias-corrected (solid) measures of
signal modulation summed across the IT (top) and
PRH (bottom) populations plotted with the same
conventions as Fig 2, right.
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into signal modulation magnitudes by squaring (Eq. 5) would
result in a positive mean bias.

To illustrate this bias, Fig. 3 includes plots of summed raw
and bias-corrected signal modulation magnitudes plotted as a
function of time for the IT and PRH populations (using the
“closed form” bias correction described below). These results
reveal that under physiologically relevant conditions these
biases can be considerable when signals are small or absent
(e.g., at stimulus onset, biased estimates of visual modulation
are �1.7 standard deviations in IT and PRH compared with
bias-corrected measures of �0) and that these biases become
smaller when signals are larger (e.g., at the peak of the visual
signal, the bias is �0.25 standard deviations in IT and PRH,
which is only �3% of the bias-corrected value). This is
because the bias is additive in the domain of the squared
weights but to compute signal modulations we take the square
root. The square root operation has the effect of enhancing the
effect of the bias when the modulation is small and shrinking
it when the modulation is larger. The reason why we prefer to
take the square root rather than operating on the squared
modulations is that we find that measures of signal modulations
in units of “spike counts” are preferable to units of “squared
spike counts” in that they more clearly map onto our intuitive
definitions of signals (e.g., signals double when firing rates
double).

To estimate bias, we compared two methods: an analytical
solution and a bootstrap technique. Under the assumption that
trial-by-trial variability is Gaussian distributed, which is a
reasonable approximation of Poisson distributions when the
mean spike counts are sufficiently large, the amount of bias can
be derived and unbiased measures of the squared weights ŵi

2

can be computed as (see APPENDIX)

Biasclosed form �
R · �bi

T�2

T
; ŵi

2 � �R · bi
T�2 �

R · �bi
T�2

T
(9)

where T equals the number of repeated trials for each experi-
mental condition.

Because the analytical solution assumes that spike counts are
Gaussian distributed whereas spike count distributions are
known to deviate from this assumption, particularly at low
firing rates, we also introduce a bootstrap procedure. The first
step in estimating the bias for a given weight involves resam-
pling with replacement T responses to each condition and
recomputing the squared weight for these bootstrapped re-
sponses w̃i

2 with Eq. 4. Next, the bias can be estimated by
subtracting the modulation computed from the actual responses
from the bootstrapped modulation estimates, and finally a
corrected estimate for each squared weight ŵi

2 can be computed
simply by subtracting the bias (Efron and Tibshirani 1994):

Biasbootstrap � w̃i
2 � wi

2 ; ŵi
2 � wi

2 � �w̃i
2 � wi

2� (10)

In practice, we find that the bias estimated on any one resam-
pling can be noisy, and thus we find it useful to calculate the
bias a number of times (e.g., 100) and average the bias across
those calculations.

To test our bias correction procedures, we performed simu-
lations in which we created “ground truth” neurons with known
amounts of underlying modulation, simulated their trial-by-
trial variability as Poisson, and compared the ground truth and
estimated modulation magnitudes. To test the bias correction in

a relevant regime, we performed these simulations by creating
a population of 150 “ground truth” neurons that were inspired
by actual neurons we recorded in IT and PRH (examples
include the neurons shown in Fig. 2). Specifically, we com-
puted each simulated neuron’s underlying responses by apply-
ing a bias correction to 150 randomly selected raw response
matrices measured in our experiments, and we then used these
mean values to generate N Poisson simulated trials. Figure 4A
shows the fractional bias (total bias/total signal), computed for
a population of 150 neurons, averaged over 100 simulated
experiments. This plot reveals that, as expected, total bias
decreases as a function of the number of repeated trials (Fig.
4A). With only 2 trials the magnitude of the bias exceeded the
magnitude of the signal (fractional bias �1.5), and fractional
bias dropped to �0.15 for 20 trials and �0.025 for 100 trials.
However, at all numbers of trials, the closed-form bias correc-
tion did a very good job at correcting bias (maximal fractional
bias remaining after correction � 0.01 for 2 trials; Fig. 4A). In
contrast, fractional bias remained high after the bootstrap
correction for small numbers of trials (�0.7 for 2 trials) but
converged to the closed-form correction for more than 25 trials
(Fig. 4A). Poor bootstrap performance with small sample size
is a well-known phenomenon (Chernick 2007).

For a closer look at the closed-form bias correction, Fig. 4B
displays the distribution of fractional error (total error/total
signal) after correction across the 100 simulated experiments
when 20 trials for each condition were collected. This distri-
bution is centered around 0, thus confirming that the bias has
been successfully removed, and it shows that the remaining
average fractional error is small (�0.012 in magnitude) for
individual experiments. These results support the validity of
our procedure for estimating signal modulation magnitudes
averaged across a population. However, we caution the reader
that while the average signal modulation estimates are very
accurate, no method can correct for the specific “noise” pat-
terns within the data for a particular neuron. To illustrate this,
Fig. 4C, left, displays the distribution of fractional error re-
maining after correction for a representative simulated neuron
across the 100 simulated experiments. On average, the error
was zero (thus showing no bias); however, on individual
simulated experiments, the fractional error ranged from �0.45
to 0.46. Figure 4C, right, shows the “ground truth” response
matrix for this neuron as well as one response matrix collected
during a simulated experiment. As depicted by the “ground
truth” matrix, this neuron was largely visual modulated and
responsive to the visual presentation of image 4 but the
response matrices collected in this simulated experiment reflect
other types of modulation as a result of trial-by-trial variability;
even after bias correction, these translate to signal modulation
estimates that deviate from the true underlying value. These
results demonstrate that the signal modulation magnitudes
computed for any individual neuron need to be interpreted
cautiously.

The simulations reported above were performed with spike
counting windows of 50 ms, and with that size counting
window we found that the closed-form bias correction was
better at estimating bias than the bootstrap bias correction (Fig.
4A). We wondered whether the bootstrap might perform better
than the closed-form correction for smaller counting windows
where spike count distributions deviate more from the Gauss-
ian assumption (e.g., are Poisson), and thus we compared both
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types of correction for spike count windows of 2 ms. In these
narrow windows, the total fractional bias increased dramati-
cally relative to the broader windows (bias was 16-fold larger
than signal for 2 trials; Fig. 4D) but the closed-form bias
correction continued to perform well (maximal magnitude
fractional bias remaining after correction � �0.04 for 2 trials;
Fig. 4D). In contrast, the bootstrap correction performed con-
siderably worse at all numbers of trials, with the most discrep-
ant differences for small numbers of trials; even with 10 trials,
the average fractional bias remaining after bootstrap correction
was 47% the magnitude of the signal (Fig. 4D). These results
suggest that for small spike count windows and the numbers of
trials typically collected in these types of experiments (n �
5–20), the bootstrap correction is highly inaccurate. In contrast,
the closed-form bias correction is highly accurate within this
regime despite its assumption of Gaussian-distributed trial-by-
trial variability.

Relating signal modulations and task performance. Quanti-
fying the performance of individual neurons on a task by
calculating the discriminability measure d= is a commonly used

approach to compare neurons within or between brain areas.
For tasks that involve multiple experimental parameters or
require the combination of multiple information sources to
compute a solution, arriving at a quantitative understanding of
how different signal types relate to task performance can be
challenging. Here we derive this relationship for the DMS task
(Fig. 1A). We then go on to demonstrate how this type of
quantitative understanding can be used to, for example, deter-
mine which of many possible accounts can explain why two
populations have different average d=, by applying the analysis
to data collected in IT and PRH.

The DMS task described in Fig. 1A requires a subject to
determine whether each test image is a target match or a
distractor, and thus can be envisioned as a two-way discrimi-
nation between the set of all target matches versus the set of all
distractors. Because target matches and distractors correspond
to conditions on versus off the diagonal of the response matrix,
respectively, we refer to this as “diagonal d=.” Diagonal d= is
calculated as the absolute value of the difference between the
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Fig. 4. Evaluation of bias-correction procedures. To evaluate
the accuracy of our signal modulation measures, a population
of 150 simulated neurons with known amounts of signal
modulation were created from measured responses in IT and
PRH. A: fractional bias, calculated as the ratio of the total bias
(summed across all signal modulations) divided by the total
signal (summed across all signal modulations), plotted for the
uncorrected simulated population (black), the closed-form
bias correction (red), and the bootstrap bias correction (cyan)
as a function of the number of Poisson trials collected in each
simulated experiment when spikes were counted in 50-ms bins
centered 125 ms after stimulus onset. Shown are the averages
over 100 simulated experiments. Plot on right shows an
enlargement of the boxed region indicated on left. B: a
histogram of the average (across the 150 simulated neurons)
fractional error (total error/total signal) remaining after the
closed-form correction for each of 100 simulated experiments
with 20 Poisson trials to show that the fractional bias mea-
sured per experiment is always near 0. C, left: histogram of the
fractional bias remaining for 1 representative simulated neu-
ron to show that fractional error measured per neuron can be
large. Right: the “ground truth” response matrix for this
neuron plotted along with 1 example matrix measured from a
simulated experiment that produced an extreme fractional
error. D: results of the same analysis presented in A, but
performed from responses counted in 2-ms windows. As in A,
plot on right shows an enlargement of the boxed region
indicated on left.
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mean response to all target matches and the mean response to
all distractors, divided by their pooled standard deviation:

|d ' | �
��Match � �Distractor�

�pooled
,

where �pooled ��4 · �Match
2 � 12 · �Distractor

2

16
(11)

Because target match modulations in IT and PRH result
from both increases and decreases in the firing rates (e.g., Fig.
2, 3rd vs. 6th rows), the absolute value of diagonal d= best
quantifies the linearly discriminable match/distractor informa-
tion in each neuron. Similar to the signal modulation bias
described above, merely taking the absolute value of d= pro-
duces a biased estimate of performance in which any modula-
tions, including noise, translate into positive d=. In particular,
note that this bias is directly dependent on the numerator of the
d= (i.e., the estimated absolute difference can be larger than 0
even if the true difference was 0), while the denominator
corresponds to the classic estimator of the standard deviation
and it does not have a direct impact on the bias (see APPENDIX).
To correct for the bias of the d= we can thus focus on correcting
for the bias of the numerator, which requires a calculation
analogous to that described above for the case of signal
modulations (Eq. 9). In particular, it is possible to show (see
APPENDIX) that the bias of the squared numerator is equal to

�
i�1

4 1

16
· mi��

i�1

12 1

144
· di

T
(12)

where mi indicates the response to the ith match, di indicates
the response to the ith distractor, and T indicates the number of
trials. Therefore, a corrected estimate of the absolute d= can be
obtained as

�d '̂� ����Match � �Distractor�2 �

�
i�1

4 1

16
· mi��

i�1

12 1

144
· di

T

�pooled
2

(13)

where |d'̂| is set to 0 if the numerator takes on a negative value.
Below, we also apply the bias correction to estimate the
orthonormal weights (Eq. 9).

To derive the relationship between the signal modulations of
a neuron (Fig. 2) and its diagonal d=, we begin by computing
the orthonormal basis weights (Eq. 4). As described above,
rescaling a neuron’s firing rate responses (e.g., multiplying a
neuron’s response matrix by 2) will result in a rescaling (i.e., a
doubling) of all its weights, and, consequently, its signal
modulations will also increase. To describe the signal modu-
lations in a manner that does not depend on the overall scaling
of firing, we normalized the weights by the grand mean spike

count SC�. We then considered the grand mean spike count as
a separate term.

Using the orthonormal basis, the diagonal d= of a neuron can
be deconstructed as a function of three intuitive “signal
strengths” (see APPENDIX for the derivation):

�d ' � �� D

ND � 1 ⁄ SC�
(14)

The first signal strength, “D,” which we call the “diagonal
strength” (Fig. 5) is computed as

D �
1

3
· 	wdiag

SC�

2

(15)

where wdiag corresponds to the weight applied to the diagonal
basis component (Fig. 1D). This signal strength determines the
distance between the average of the diagonal responses (the
target matches), and the average of the off-diagonal responses
(the distractors), averaged across all images and all trials (Fig.
5B), and this term is proportional to diagonal d= (Fig. 5C).

The second signal strength, “ND,” which we call the “non-
diagonal strength” (Fig. 5), is computed as

ND �
1

16
· �

i�diag,

i�mean

	 wi

SC�

2

(16)

where the weights used are those corresponding to the visual,
working memory, and residual components (Fig. 1D). This
term determines the spread of the firing rate responses within
the target matches and within the distractors (Fig. 5B), and it is
inversely related to diagonal d= (Fig. 5C).

The final term 1⁄SC� (Fig. 5) is designed to capture the
trial-by-trial variability of a neuron. When trial-by-trial vari-
ability is generated by a Poisson process, the grand mean spike
count can be used as a good approximation of the variance
across trials within each condition, averaged across the 16
conditions, and this term can be described by the inverse of the
grand mean spike count (see APPENDIX). This term is also
inversely related to diagonal d=, as an increase in the spread
within each condition will produce an overall increase in the
spread across the set of all target matches and the set of all
distractors.

We now demonstrate how understanding the relationship
between different signal types and single-neuron task per-
formance can be used to gain insight into neural processing
by applying these analyses to our data from IT and PRH. We
begin with the observation that diagonal d= was significantly
higher in PRH compared with IT (mean IT � 0.11, PRH �
0.19, P � 0.001; Fig. 5A). We can use the derivation of
diagonal d= presented above to discriminate between differ-
ent possible explanations of why diagonal d= is higher in
PRH. Our decomposition suggests three possible factors that
might account for this result (which are not mutually exclu-
sive): 1) the diagonal strength (Fig. 5C) could be higher in
PRH than in IT; 2) the nondiagonal strength (Fig. 5C) could
be lower in PRH than in IT; and/or 3) grand mean firing
responses (Fig. 5C) could be higher in PRH than in IT. First
and foremost, the diagonal strength was significantly higher
in PRH than in IT (Fig. 5D), suggesting that this factor
contributed to higher average neuron diagonal d= in PRH.
Second, the nondiagonal strength was not significantly dif-
ferent between IT and PRH (Fig. 5E), suggesting that this
factor could not account for the difference in neuron diag-
onal d=. Finally, the grand mean firing rates were slightly
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lower in PRH compared with IT but not significantly so
(Fig. 5F), and, notably, lower firing rates in PRH are the
opposite of what would be required to account for higher
average PRH neuron diagonal d= (Fig. 5C). Taken together,
these results suggest that higher neuron diagonal d= results
from a twofold increase in diagonal structure within the
response matrices of PRH neurons compared with IT neu-
rons, as opposed to alternative explanations (such as in-
creases in firing rate in PRH or more nondiagonal modula-
tion in IT).

DISCUSSION

In our own work, we have found this method of estimating
signal modulation magnitudes to be useful for a variety of
applications. For example, we have used these signal quanti-
fications as a benchmark to assess model performance (Pagan
et al. 2013). We have also used these methods to compare the
latencies with which specific types of signals arrive in different
brain areas to infer the direction of information flow between

them (Pagan et al. 2013). As described above, these methods
can also be used to uncover the underlying source of differ-
ences in single-neuron performance measures between brain
areas to gain insights into neural coding. These are but a few
examples of the potential uses of this method.

Relationship to other analyses. The method we describe here
is similar to a multi-way ANOVA, but it incorporates two
important extensions: it parses the signal into more terms, and
it produces a bias-corrected estimate of signal modulation. For
the DMS task described above, a two-way ANOVA would
parse the total response variance into two linear terms, a
nonlinear interaction term, and an error term. The two ANOVA
linear terms map directly onto the summed squared projections
onto the visual and working memory orthonormal basis vectors
(e.g., in Eq. 5, the computation of Mvis and Mwm before taking
the square root). Similarly, the ANOVA nonlinear interaction
term maps onto the summed squared projections onto the
“diagonal” and “residual” terms in our analysis. We note that
parsing the diagonal signals from the other nonlinear terms is
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crucial in our analysis because this signal reflects the task
solution, whereas the other types of nonlinear terms do not.
The final term in the ANOVA analysis, the error term, is equal
to the square of the ��noise term described in Eq. 6. We remind the
reader that in this raw form the values of the orthonormal basis,
as well as the ANOVA, are biased because of trial-by-trial
variability (i.e., response matrix structure that arises from
noise). The ANOVA deals with this bias by computing the
probability (the P value) that each term is significantly higher
than expected by chance, given the trial-by-trial variability, by
considering the ratio between each term and the error term (the
“F statistic”), based on the assumption that the noise is Gauss-
ian distributed. However, the ANOVA does not produce bias-
corrected estimates of signal modulation, whereas here we
describe two ways to estimate and correct for this bias.

Our method also has similarities with an approach related to
the ANOVA, MLR. Similar to our procedure, MLR seeks to
describe a neuron’s responses as a weighted sum of multiple
terms. In practice, it is most often applied to continuous
variables (e.g., motion direction or color), and often in cases in
which one has an specific underlying model of how different
stimulus parameters combine to determine a neuron’s response
(e.g., knowledge that neurons have Gaussian-shaped tuning
functions for motion direction). MLR can also be applied in
nonparametric cases, and when used in this way multiple terms
are required to capture response modulation of a single variable
type (e.g., for object identity, response � baseline � weight_
1 � identity_1 � weight_2 � identity_2 � . . . ) and, in fact,
our method could be described as an MLR with the regressors
specified by an intuitive orthonormal basis. When viewed from
this perspective, our method can provide multiple insights for
those wishing to perform this type of MLR. First, a crucial
consideration with MLR is the degree to which the different
regressors are correlated with one another, because the values
of the weights (i.e., the “beta coefficients”) can be misleading
in case of strongly correlated regressors. One solution to this
problem is to orthogonalize the variables of interest, although
we note that for some data sets the experimental variables
simply cannot be orthogonalized (e.g., Fig. 1E). Our method
provides a straightforward way to evaluate the degree to which
different candidate experimental designs can be orthogonalized
for MLR. Second, determining the weights for a complete

orthonormal basis guarantees a full account of a neuron’s spike
count modulation, whereas an MLR against a few (e.g., linear)
terms might provide only a partial account. Finally, if one
desires to convert MLR “beta coefficients” into positive-valued
measures of modulation, these measures will be biased in the
exact same manner we describe above, and here we introduce
a way to correct for that bias.

Our method also has similarities with PCA and related
techniques (Machens 2010). A PCA applied to the mean firing
rate responses of a population of neurons to N experimental
conditions returns an orthonormal basis of N “eigenvectors,”
and each neuron’s mean firing rate response to the N conditions
can be decomposed into a weighted sum of these vectors by
projecting the neuron’s responses onto the basis, as described
above. PCA differs from our method in that the eigenvectors
are produced via a procedure that iteratively determines the
stimulus dimensions that account for the most response vari-
ance across the population with the constraint that each suc-
cessive vector must be orthogonal to all the others. Conse-
quently, PCA dimensions are not guaranteed to be intuitive. As
an illustration, Fig. 6A shows the results of a PCA applied to
our IT and PRH populations. While the two largest eigenvec-
tors for each population are primarily visual, they are not
purely so, and eigenvectors of rank three and lower capture
mixtures of different types of modulation. Thus PCA is not
very useful in providing an intuitive description of the types
of signals reflected in these populations. Rather, PCA is
most often used as a “dimensionality reduction” technique.
For example, in the case of the reverse correlation method
“spike-triggered covariance” (Schwartz et al. 2006) one
applies a PCA to the spike-triggered stimuli in an attempt to
find a small number of stimulus dimensions that can account
for individual neuron’s responses within a linear-nonlinear
model framework.

One extension of the PCA framework, demixed PCA
(dPCA; Brendel et al. 2011; Machens 2010) has recently been
introduced as a solution to the “mixing” issues described above
for PCA. dPCA allows one to specify the experimental param-
eters that should not be mixed and thus to perform dimension-
ality reduction within specific linear subspaces. It is advanta-
geous over our method in scenarios in which, for example, one
wants to determine whether the responses to a specific type of

PCA: Eigenvectors (decreasing rank)

PRH

IT

dPCA: Eigenvectors (decreasing rank)

PRH

IT

A

B

Fig. 6. Results of principal components analysis (PCA)
and demixed PCA (dPCA). A: illustration of the ortho-
normal components corresponding to the 8 largest
eigenvectors obtained by applying PCA to our IT and
PRH data. B: 8 largest orthonormal components result-
ing from the application of dPCA.
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stimulus parameter can be captured with a simple (i.e., low
dimensional) description or, equivalently, to uncover specific
types of “tuning.” For example, dPCA has provided important
insights into how the working memory delay period activity of
neurons in prefrontal cortex depends on time (Machens et al.
2010). The results of a dPCA applied to our data in IT and PRH
are shown in Fig. 6B. The input to dPCA included the neural
responses to all conditions as well as the task parameters (i.e.,
the visual and target identities) associated with each condition.
This information, which is not provided to traditional PCA,
allows dPCA to search for a set of components that capture
most of the modulation while avoiding mixing different types
of signals (e.g., visual and working memory). In contrast to a
regular PCA (Fig. 6A), the first three components in each area
are almost exclusively visual and the fourth component for
PRH corresponds to the “diagonal” component of the ortho-
normal basis. However, one can also see from this analysis that
if the desired outcome is a characterization of “how much” of
specific, predefined signal types are present in a population, the
orthonormal basis provides a better approach for two reasons:
1) the components retrieved by dPCA still present some degree
of “noise,” and thus if the relevant axes are known in advance
it is better to measure their modulations directly, and 2) in
situations in which one wants to make a quantitative compar-
ison between two populations, some compromise has to be
established when different dPCA components are retrieved for
each population (e.g., compare IT and PRH in Fig. 6B).

Finally, a complementary approach for quantifying signals is to
measure single-neuron performance either by a ROC analysis (e.g.,
Bennur and Gold 2011; Newsome et al. 1989; Swaminathan and
Freedman 2012) or by the related (boundless) discriminability mea-
sure d= (e.g., Adret et al. 2012; Gu et al. 2012; Liebe et al. 2011).
Under the assumption that trial-by-trial variability is Gaussian distrib-
uted, one can convert between the two measures with a simple
nonlinear function (i.e., the complementary error function; Dayan and
Abbott 2001). As our results show, in a multiparameter task like
DMS, single-neuron task performance does not necessarily depend
on a single type of signal but instead can reflect the combination of
multiple signal types. Additionally, it is important to note that if one
wishes to compute a measure of task performance that is unsigned
(i.e., by taking the absolute value or squaring), these task performance
measures will be biased. However, this bias can be estimated and
corrected with the approaches we describe here.

APPENDIX

Derivation of the bias correction for signal modulations.
When estimating the amount of modulation (or information) in a
signal, noise and limited sample size are known to introduce a positive
bias (see, e.g., Treves and Panzeri 1995). Here we quantify the
magnitude of this bias for the weights associated to the different signal
components (Eq. 4), which are used to produce the estimated modu-
lation components (Eq. 5) of a single neuron.

We begin by making the simplifying assumption that responses to
each condition j are normally distributed with mean �j and variance
�j

2 and that for each condition, �j is approximately equal to �j
2. We

indicate the estimate of the mean response �j to each condition as rj

defined as the average of the responses sampled over T trials. The
value of the estimate rj will itself be normally distributed, with mean
equal to the true mean �j and variance equal to �j

2/T.
By expanding Eq. 4, the estimated weight associated to each

component i can also be written as

wi � R · bi
T � �

j�1

16

rj · bij (17)

where rj indicates the neuron’s average response to the jth condition
and bij indicates the jth entry of the ith basis component. Since wi is
a linear combination of normally distributed variables, it will also be normally
distributed. The mean of wi will thus be equal to the linear combination of the
means of the estimated rj (i.e., the true mean responses �j) and the entries bij,
while the variance will be equal to the linear combination of the variances of
rj (i.e., �j

2/T) and the squared entries bij
2:

Mean�wi� � �
j�1

16

� j · bij ; Variance(wi) �
�
j�1

16

� j
2 · bij

2

T
(18)

Note that �j�1
16 �j·bij is the value of the “true” weight, and this

estimate of wi is unbiased. However, a bias is introduced by squaring
the estimated weight wi. The square of a normally distributed variable
with nonzero mean takes the form of a noncentral 	2 distribution,
whose mean is equal to the sum of the squared mean of the original
normally distributed variable plus its variance. In our case:

Mean�wi
2� � �Mean�wi��2 � Variance(wi) �

	�
j�1

16

� j · bij
2

�
�
j�1

16

� j
2 · bij

2

T
(19)

Under the assumption that the variance for each condition is equal to its
mean:

Mean�wi
2� � 	�

j�1

16

� j · bij
2

�
�
j�1

16

� j
2 · bij

2

T
�

	�
j�1

16

� j · bij
2

�
�
j�1

16

� j · bij
2

T
(20)

where the first term corresponds to the “true” squared weight and the
second term represents the additive bias. If we substitute the true mean
responses with their estimates, we obtain an estimator of the bias:

Bias �
�
j�1

16

� j · bij
2

T
Bias estimator �

�
j�1

16

rj · bij
2

T
�

R · �bi
T�2

T
(21)

where R indicates the neuron’s response matrix (“flattened” into a
vector) and (bi

T)2 indicates the ith basis function, squared element by
element. Finally, an unbiased estimator of wi

2 is given by

ŵi
2 � �R · bi

T�2 �
R · �bi

T�2

T
(22)

Derivation of the bias correction for the diagonal d=. The
equation for the absolute value of the diagonal d= is presented in Eq.
11. As in the case of signal modulations, for simplicity we proceed by
estimating the bias for the squared diagonal d=. As above, we make the
simplifying assumption that responses to each condition j are nor-
mally distributed with mean �j and variance �j

2 and that for each
condition, �j is approximately equal to �j

2.
The numerator of the squared diagonal d= is given by the square of

the difference between the mean match response and the mean
distractor response. Since the response to each condition is assumed to
be normally distributed, the difference between mean match and mean
distractor is a linear combination of normal random variables and is
also normally distributed. The numerator is equal to the square of this
value, and it thus follows a noncentral 	2 distribution, whose mean is
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equal to the sum of the squared mean of the original normally
distributed variable plus its variance:

Mean���Match � �Distractor�2� � [Mean��Match � �Distractor�]2 �

Variance��Match � �Distractor� �

. . . 	�
i�1

4 1

4
· mi��

i�1

12 1

12
· di
2

�

�
i�1

4 1

16
· �mi,noise

2 ��
i�1

12 1

144
· �di,noise

2

T

. . . � 	�
i�1

4 1

4
· mi��

i�1

12 1

12
· di
2

�

�
i�1

4 1

16
· mi��

i�1

12 1

144
· di

T
(23)

where mi indicates the mean response to the ith match and �mi,noise

2 is its
corresponding trial-by-trial variance, di indicates the mean response to
the ith distractor and �di,noise

2 is its corresponding trial-by-trial variance,
and we used the assumption that the trial-by-trial variance for a given
condition is equal to its corresponding mean response. The bias of the
numerator of the squared d= is then equal to

Bias���Match � �Distractor�2� �

�
i�1

4 1

16
· mi � �

i�1

12 1

144
· di

T
(24)

The denominator of the squared diagonal d= is equal to the pooled
variance of the noise across matches and distractors. In the general
case in which different conditions elicit different amounts of trial-by-
trial variability, the denominator results in a linear combination of 	2

variables, and its parameters can only be estimated in an approximated
form (Satterthwaite 1946). However, one can note that the estimate of
each individual trial-by-trial variance is unbiased, and therefore a
linear combination of unbiased quantities is unbiased itself; thus no
bias is introduced by the denominator. Consequently, the bias of the
diagonal d= can be corrected by subtracting the bias of the squared
numerator according to Eq. 24, dividing it by the estimate of the
pooled variance, and taking the square root (Eq. 13).

Derivation of diagonal d= as a function of the orthonormal
basis. Here we demonstrate that a neuron’s diagonal d= can be
deconstructed into a function of three “signal strengths” defined in
terms of the orthonormal basis presented in Fig. 1D. Diagonal d= is
defined as the absolute value of the difference between the mean
response to all target matches and the mean response to all distractors,
divided by the pooled standard deviation of the noise (Eq. 11).

The numerator of diagonal d= can thus be expressed as the absolute
value of the dot product between the flattened response matrix R and
a similarly formatted vector c, in which the target matches are scaled
by 1/4 and the distractors are scaled by �1/12:

��Match � �Distractor� � ��
i�1

4 1

4
· mi � �

i�1

12 1

12
· di� � �R · c� (25)

where mi denotes the mean response to the ith match and di denotes
the mean response to the ith distractor. The orthonormal basis function
corresponding to the diagonal modulation bdiag is equal to c multiplied
by 	3 to impose unitary norm. As a result, the numerator of a
neuron’s diagonal d= can be rewritten as

��Match � �Distractor� � �R · c� � �R ·
bdiag

�3
� ��1

3
. wdiag

2

(26)

The denominator of the diagonal d= is equal to the pooled standard
deviation, i.e., the square root of the pooled variance (Eq. 11). Our

goal is to arrive at a formulation of the pooled standard deviation as
a function of the orthonormal basis weights.

We begin by expanding the terms for the variance of spike count
responses to target matches �Match

2 and to distractors �Distractor
2 . If we

indicate with mit the response to the ith match on the tth trial, �Match
2

can be rewritten as

�Match
2 �

1

80
· �

i�1

4

�
t�1

20

�mit � �Match�2 �
1

80
· �

i�1

4

�
t�1

20

�mit � mi � mi

� �Match�2� . . .

�
1

4
· �

i�1

4

�mi � �Match�2�
1

4
· �

i�1

4 1

20
· �

t�1

20

�mit � mi�2

�
1

4
· �

i�1

4

�mi � �Match�2 � �̄ noise,Match
2 (27)

where �� noise,Match
2 indicates the average trial-by-trial variability across

the four matches and mi denotes the mean response to the ith match.
Similarly, if we indicate with dit the response to the ith distractor on
the tth trial, �Distractor

2 can be written as

�Distractor
2 �

1

240
· �

i�1

12

�
t�1

20

�dit � �Distractor�2�
1

12
· �

i�1

12

�di � �Distractor�2

��̄ noise,Distractor
2 (28)

where �� noise,Distractor
2 is the average trial-by-trial variability across the

12 distractors and di is the mean response to the ith distractor. Now we
substitute �Match

2 and �Distractor
2 from Eqs. 27 and 28 into Eq. 11 and

express the pooled standard deviation as

�pooled ��
1

16
· � �

i�1

4
�mi � �Match�2 � �

i�1

12
�di � �Distractor�2�

�
4 · �̄ noise,Match

2 � 12 · �̄ noise,Distractor
2

16
� . . .

�� 1

16
· �

i�1

4

�mi � �Match�2 � �
i�1

12

�di � �Distractor�2� � �̄ noise
2

� ��MD
2 � �̄ noise

2 (29)

where �� noise
2 indicates the average trial-by-trial variability across all

conditions (as defined in Eq. 7) and �MD
2 indicates the sum of the

variance across matches and the variance across distractors:

�MD
2 �

1

16
· �

i�1

4

�mi � �Match�2 � �
i�1

12

�di � �Distractor�2� (30)

We now wish to express �MD
2 as a function of the orthonormal basis

components. Here we indicate the average response to the ith condi-

tion as ri and the grand mean spike count across all conditions as SC�

and we derive an expansion of the sum of the squared responses by

substituting SC� � 1 
 4·�Match � 3 
 4·�Distractor :
(31)

�
i�1

16

ri
2 � �

i�1

16

�ri � SC��2
� 16 · SC�2 � · · ·

� �
i�1

4

�mi � �Match � �Match � SC��2
� �

i�1

12

�di � �Distractor

� �Distractor � SC��2
� 16 · SC�2 � · · ·

� �
i�1

4

�mi � �Match�2 � �
i�1

12

�di � �Distractor�2 � 3 · ��Match

� �Distractor�2 � 16 · SC�2 � · · ·

� 16 · �MD
2 � 3 · ��Match � �Distractor�2 � 16 · SC�2

Equation 31 can be rearranged as
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�MD
2 �

1

16
· �

i�1

16

ri
2 � 16 · SC�2 � 3 · ��Match � �Distractor�2� (32)

The diagonal basis function bdiag and the grand mean basis function
bmean are defined such that their weights wdiag and wmean take the
following values:

wdiag
2 � �R · bdiag

T �2 � 3 · ��Match � �Distractor�2 ; wmean
2 � �R · bmean

T �2

� 16 · SC�2 (33)

Because b1 . . . b16 form an orthonormal basis,

�
i�1

16

wi
2 � �

i�1

16

�R · bi
T�2 � �

i�1

16

ri
2 (34)

Substituting Eqs. 33 and 34 into Eq. 32 allows us to derive

�MD
2 �

1

16
· �

i�1

16

wi
2 � wdiag

2 � wmean
2 � �

1

16
· �

i�diag,

i�mean

wi
2 (35)

We now substitute Eq. 35 into Eq. 29:

�pooled � �
1

16
· �

i�diag,

i�mean

wi
2 � �̄noise

2 (36)

Diagonal d= can thus be written as

|d ' | �
��Match � �Distractor�

�pooled
��

1

3
· wdiag

2

1

16
· �

i�diag,

i�mean

wi
2 � �̄noise

2

(37)

In the raw formulation of the weights, rescaling a neuron’s firing
rate responses (e.g., multiplying a neuron’s response matrix by 2)
results in a rescaling (i.e., a doubling) of all its deconstructed matrix
weights, and, consequently, modulations due to changes in the pattern
of responses within the matrix and overall firing rates are entangled.
To capture matrix structure in a manner that does not depend on the
overall scaling of firing, we compute the “normalized weights” by

dividing each weight by the grand mean spike count SC�. Dividing

both numerator and denominator of Eq. 37 by SC� allows us to express
diagonal d= as a function of the normalized weights:

|d ' | ��
1

3
· wdiag

2

1

16
· �

i�diag,

i�mean

wi
2 � �̄noise

2

��
1

3
· 	wdiag

SC�

2

1

16
· �

i�diag,

i�mean

	 wi

SC�

2

�
1

SC�
· 	 �̄noise

2

SC�

 (38)

Finally, we express diagonal d= as a function of three components:

|d ' | ��
D

ND �
1

SC�

(39)

where

D �
1

3
· 	wdiag

SC�

2

ND �
1

16
· �

i�diag,

i�mean

	 wi

SC�

2

1

SC�
�

1

SC�
· 	 �̄noise

2

SC�

 (40)

using the assumption that SC� is equal to �� noise
2 .
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