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The ability to flexibly switch our responses to external stimuli according to contextual
information s critical for successful interactions with acomplex world. Context-
dependent computations are necessary across many domains'>, yet their neural
implementations remain poorly understood. Here we developed a novel behavioural

taskin rats to study context-dependent selection and accumulation of evidence for
decision-making*¢. Under assumptions supported by both monkey and rat data, we
first show mathematically that this computation can be supported by three dynamical
solutions and that all networks performing the taskimplement acombination
of'these solutions. These solutions can be identified and tested directly with
experimental data. We further show that existing electrophysiological and modelling
dataare compatible with the full variety of possible combinations of these solutions,
suggesting that different individuals could use different combinations. To study
variability across individual subjects, we developed automated, high-throughput
methods to train rats on our task and trained many subjects using these methods.
Consistent with theoretical predictions, neural and behavioural analyses revealed
substantial heterogeneity across rats, despite uniformly good task performance.

Our theory further predicts a specific link between behavioural and neural signatures,
which was robustly supported in the data. In summary, our results provide an
experimentally supported theoretical framework to analyse individual variability in
biological and artificial systems that perform flexible decision-making tasks, open
the door to cellular-resolution studies of individual variability in higher cognition,
and provide insights into neural mechanisms of context-dependent computation

more generally.

We are often required to use context or top-down goals to select
relevant information from a sensory stream, ignore irrelevant infor-
mation and guide further action. For example, if we hear our name
called ina crowded room and our goal is to turn towards the caller,
regardless of their identity, information about the location of the
sound will drive our actions; but if we wish to respond on the basis
of the identity of the caller, the frequencies, in the very same sound,
will be most important for driving our actions. As with other types
of decision, when the evidence for or against different choices is
noisy or uncertain, accumulation of many observations over time
is an important strategy for reducing noise*”%, Here we explore the
neural mechanisms that underlie our ability to flexibly accumulate
evidence about external stimuli and to switch our response according
to contextual information.

Wedeveloped aseries of experimental and computational techniques
to addressthis question. First, we developed abehavioural pulse-based
taskinratstostudy context-dependent selection and accumulation of
evidence for decision-making. Delivering evidence in highly random,

yet precisely known pulses provided us with high statistical power to
precisely characterize the rats’ behaviour and neural dynamics. Then,
using an automated, high-throughput procedure, we trained many rats
to solve the task, which enabled us to uncover a surprising degree of
variability in the behaviour and neural dynamics across individuals,
even when they were all well-trained, high performing animals. Next,
we developed a mathematical framework that defined the space of
solutions for networks that canimplement the required computation.
Thetheoretical framework predicted that variability in positionin that
solutionspace, withinand acrossindividuals, should be the underlying
variable that would jointly drive variability in behaviour and neural
responses—implying that behavioural and neural variability should
be tightly correlated. Our experimental data robustly confirmed this
theoretical prediction. Finally, we developed techniques to engineer
artificial recurrent neural networks (RNNs) across the full range of our
theoretical solution space and showed that gradient-descent methods,
as typically used to train network models, lead to only one corner of
the possible data-compatible solutions.
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Fig.1|Rats can perform context-dependent evidence accumulation.a, The
task. Each trial starts withasoundindicating context (LOC or FRQ), followed by
al.3-strain of randomly timed auditory pulses. Each pulse is played either from
aleft orright speaker, and has either low or high frequency (freq.). InLOC trials,
subjects must turn, at the end of the stimulus, towards the side that played the
higher total number of pulses, ignoring frequency. In FRQ trials, subjects must
turnrightif there was ahigher number of high-frequency pulses (Hi) and leftif
there wasahigher number of low-frequency pulses (Lo). Anidentical stimulus
canbeassociated with opposite responsesin the two contexts. L, left; R, right.
b, The stimulus set. ¢, Logistic fits of psychometric curves for 20 rats after
training (more than120,000 trials for eachrat). In the LOC context, choices are
mostly affected by location; in the FRQ context, choices are mostly affected

by frequency. d, Population activity evolving over time correspondstoa

Flexible evidence accumulationin rats

To study the neural basis of context-dependent selectionand accumu-
lation of sensory evidence, we trained rats on a novel auditory task in
which, inalternating blocks of trials, subjects were cued to determine
either the prevalent location (LOC) or the prevalent frequency (FRQ)
of asequence of randomly timed auditory pulses (Fig. 1a). The rela-
tive rates of left versus right and high- versus low-frequency pulses
corresponded to the strength of the evidence about LOC and FRQ,
respectively (Fig. 1b). These relative rates were chosen randomly and
independently on eachtrial, and were used to generate a train of pulses
that were maximally randomly timed—that s, having a Poisson distribu-
tion. Correct performance requires selecting the relevant feature for
agiven context, accumulating the pulses of evidence for that feature
over time, and ignoring the irrelevant feature. Many rats were trained
to good performance on this task using an automated training proce-
dure (Fig. 1c; training code available at https://github.com/Brody-Lab/
flexible_decision_making_training) and most ratslearned the taskina
timespan between two and five months (Extended Data Fig. 2g). After
training, rats associated the audiovisual cue presented at the begin-
ning of each trial with the correct task context, and were able to switch
between selected stimulus features within four trials of anew context
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trajectoryinahigh-dimensional neural space. This trajectory is projected onto
axes that optimally encode momentary LOC and FRQ evidence and choice.

e, Trajectory of choice-modulated neural activity, projected ontoits first two
principal components (PCland PC2). The trajectory was computed separately
for each context, but the principal components were computed incommon
across contexts. The choice axis was defined as the straight-line fit to the trace
fromt=0tot=1.3s.f, Populationtrajectories fromrecordings in FOF of rats
performingthe task. Trajectories are projected onto choice and LOC axes (top
row) or choice and FRQ axes (bottom row). Trajectories are sorted by strength
oflocation (top row) or frequency (bottom row). Stim, stimulus. g, Same
analysisasinf, for recordings from FEF of macaque monkeys performingan
analogous visual version of the task, with motionand colour contexts*.

block (Extended Data Fig.1e). Our task structure wasinspired by a previ-
ous visual task used with macaques*—major distinctions between the
previousand currenttasksincluded the species difference, the sensory
modality difference, and the pulse-based nature of our task; this last
will be key for the analyses performed below. Despite the important
differences across tasks, attained performances were similar across
the two species (Extended Data Fig. 1¢,f). We reasoned that the highly
randomyet precisely known stimulus pulses, together with large num-
bers of trials and subjects, would provide us with statistical power to
characterize both behavioural® and neural responses.

To compare neural dynamics in a decision-making region across
monkeys and rats, we examined neural activity in the frontal orienting
fields (FOF) while rats performed our task. The FOF are arat cortical
region that is thought to be involved in decision-making for orient-
ing choice responses'®", and have been suggested as homologous
or analogous to macaque frontal eye fields (FEF)''*'*>, which are the
cortical region recorded in the previous monkey task*. Consistent with
akeyroleforthe FOF in ourtask, bilateral optogenetic silencing of rat
FOF demonstrated that they are required for accurate performance of
the task (Extended DataFig. 4; n = 3 rats). We implanted tetrodes into
the FOF and into another frontal region, the medial prefrontal cortex
(mPFC), and we recorded from n = 3,495 putative single neurons during


https://github.com/Brody-Lab/flexible_decision_making_training
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n=199 sessions from n = 7 rats while they performed the task shown
inFig. 1. As with previous reports in frontal cortices of macaques and
rodents, we found that task-related firing rates were highly heterogene-
ous across neurons. We then carried out the same analysis that had been
applied to the (also heterogeneous) neurons recorded from monkey
FEF**, and found strong qualitative similarities across the two species
(compare Fig. 1f,g). The analysis, known as targeted dimensionality
reduction (TDR) begins by describing neural population activity at
agiven moment in time as a point in ‘neural space’, where each axis
represents the firing rate of one of the Nrecorded neurons. As activity
evolvesover the duration ofatrial, atrajectory in N-dimensional neural
space is traced out (Fig. 1d). Following ref. 4, neurons recorded sepa-
rately in different sessions were combined into a single time-evolving
N-dimensional neural vector. This ‘pseudo-population’ activity was
averaged across trials withagiven generative pulse rate (thatis, within
each of the 36 blocks in Fig. 1b), for each of the two contexts, and for
each of the subject’s choices. These trajectories were projected onto
the orthogonalized linear subspaces that best predicted the subject’s
choice, momentary location evidence or momentary frequency evi-
dence (illustrated as different axes in Fig. 1d). We found that trajectories
for different evidence strengths were clearly separated along the axis
of each sensory feature (see separation of traces along the vertical
axes of the panels of Fig. 1f; only correct trials are shown). This was true
regardless of whether the feature wasrelevant or irrelevant (compare
vertical separation for left versus right columns in Fig. 1f). A similar
observation in the monkey data (Fig. 1g) previously led to the conclu-
sionthatirrelevant featureinformation was not gated out fromreach-
ing frontal cortex*; the same conclusion applies to our rat data. Next,
we present a theoretical analysis that applies equally to this scenario
(nogating of irrelevantinformation before reaching frontal cortex), as
well as to alternative mechanisms that rely on early gating, an aspect
wereturntointhe discussion. Overall, the marked qualitative similar-
ity between the rat (Fig. 1f) and monkey (Fig. 1g) traces suggests that
the underlying neural mechanisms in the two species may be similar
enough that an active exchange of ideas between studies in the two
species will be very fruitful.

Using model-based TDR analysis™, we found the two-dimensional
subspace thatbestaccounts for the contribution of the animal’s choice
to the neural activity (accounting for 81.3% of the variance). We then
projected the kernel-based estimates of ‘go-right’ and ‘go-left’ tra-
jectories (which are noise-reduced versions of the raw trajectories)
(Extended Data Fig. 5h) onto it (Fig. 1e). During the stimulus presen-
tation (t=0tot=1.3s, aperiod during which subjects must accumu-
late sensory evidence), this choice-related information infiring rates
evolved along an essentially one-dimensional straight line in neural
space (accounting for 73.3% of the variance), only later curving into a
second dimension (see Extended Data Fig. 5 for per-animal analysis).
This is consistent with previous findings, with the initial linear phase
having been suggested as corresponding to gradual evidence accumu-
lation, whereas the subsequent rotation may correspond to formation
of amotor plan™'¢, perhaps after commitment to a decision'*". We
will focus on evidence accumulation during this linear phase, while
the decision is being formed, and will refer to the corresponding line
in neural space as the ‘choice axis”: the animal’s upcoming choice can
be predicted from position on this axis. Crucially, both correct and
incorrect trials are used for this analysis, allowing to separate this
choice-predictive signal from responses to sensory stimuli. In a final
similarity with the monkey data, we found that the choice axes, esti-
mated separately for each of the two contexts, were essentially parallel
(average angle between contexts = 1.6°; not significantly different from
0 (P> 0.1)for 6 out of 7 rats; Methods). Consequently, in the theoretical
development below we will assume that the direction of the choice axis
isthe sameinthe two contexts. However, this simplifying assumption
canberelaxed, as addressed in the discussionand detailed in Extended
DataFig.10.

Box 1

Dynamics around line attractors

Linearized dynamics around a fixed point in neural space can be
represented by % =M r, where M is a matrix and r is a vector that
represents the system'’s position in neural space relative to the
fixed point.

The eigencoordinates e, defined by e=V™'-r, where the columns
of V are the eigenvectors of M, can also be used to describe these
dynamics. The advantage of eigencoordinates is that each element
j of the vector e evolves over time independently of the others,
following e(t) = g;(t = 0) exp(A; t), where A; is the eigenvalue
corresponding to the jth eigenvector.

For a line attractor, one eigenvalue (by convention the
one with index j=0) has value O (A,=0) and consequently
eo(t) = constant = ey (t = 0). All other eigenvalues have a negative
real part, implying that their corresponding eigencoordinates
decay to zero over time, as the system state relaxes back onto the
line attractor. Thus, if an external input pulse i perturbs the system
off the line attractor onto position r(t=0)=i, it follows that, after the
transients in which eigencoordinates j>0 decay to zero, the new
position on the line attractor, relative to the starting fixed point,
will be given by ey (t)=ey(t=0), since this will be the only non-zero
eigencoordinate.

The zeroth eigencoordinate of the initial position, e(t=0), will
be the dot product of the the top row of V, which we label as the
selection vector s and the input vector i (refs. 4,19):

e(t=0) = V'-r(t=0)
=vi

whichimplies that net motion along the line attractor caused by an
input pulseiisequaltos-i.

Three components underlie task solutions

Ithaslongbeen hypothesized that neural dynamics around the choice
axis are well approximated by aline attractor®—that is, that the choice
axisisformed by aclosely packed sequence of stable points. This follows
fromtheideathat the position of the system on the choice axis corre-
sponds to netaccumulated evidence towards right versus left choice;
intemporal gaps between pulses of evidence, anaccumulator must be
abletostably maintain accumulated values, and thus positionanywhere
along this axis should be a stable point. We now develop theoretical
implications of this computation-through-dynamics® line attractor
hypothesis, which lead to a new description of the space of possible
network solutions consistent with the hypothesis, and to new experi-
mental predictions that we find to be robustly supported by the data.

A key implication of the line attractor hypothesis, which follows
fromlinearized approximations of the dynamics of the system, is that
asensory stimulus pulse that perturbs the system along direction i
has a net effect on position along the choice axis*'? given by the dot
product of that input vector i and the ‘selection vector’s. That is, the
changeinchoiceaxis positionisequaltos - i (Box1). Thus, inthelinear
dynamics approximation, and under the line attractor hypothesis, the
simple dot product s - i summarizes the result of the interaction of
local recurrent dynamics (represented by s) with a pulse of external
input (represented by i).

Itfollows that for apulse of evidence to have agreater effect on choice
inthe contextinwhichitisrelevantthanwhenitisirrelevant,s - imust
be greater in the relevant context than in the irrelevant context. The
recurrent dynamics in the decision-making region could be different

Nature | Vol 639 | 13 March 2025 | 423



Article

a Relevant Irrelevant b
LOC context context FRQ context  context Relevant GoR Irrelevant
J J GoR context © context Differential integration across contexts:
II I I LOC evidence I[ JI I l II JI I l - -
GoR GoR Srer *lret = Sirr " liRR =
LOC evidence R
= §-Ai + As i -
R =) | GoL "Time (s) GoL "Time (9) —_— [
L w) l GoR lrrelevant context GoR Relevant context ;Qs}i';::ﬂﬂiifs cl?aer?gugsegtcfoysnsagstsexts
. Pulse 'R
| esaenesmene of evidence
FRQ evidence 5. A 5- A
Gol —— Gol ——— S Al S Al
ime (s ime (s
© © Direct input + Indirect input +
J J ‘ J ‘ J - J' J' [ J { [ J J ] J' ] J GolL modulation modulation
FRQ evidence Ai
Motion on choice Motion on choice B L1
axis after pulse i axis after pulse i IAl I Ki As
= Sgev * gL =Sigr " Iirr \V
d M e svM f DIM 9
100% DIM
Relevant Irrelevant Relevant Irrelevant Relevant Irrelevant
context context context context context context
Input change
GoR orthogonal to GoR GoR GoR GoR Inout chanae GoR 0%
i u
choice axis y a\gmg chowge M
~A Ai n p 5 AL axis (@]
-« KiAS A
. AS¥L
\+/ I Aij NY 0% 100%
DIM M
GolL GolL GolL GolL Gol
Pulse response Differential Pulse response Differential Pulse response Differential Fast
GoR response GoR response GoR response
Relevant o Relevant o Relevant e}
S o E5% 5w st 52 st Change in
55 553 g% 553 g% £cd meut
R L E=4 o2 B~} [l
53 Irrelevant gﬁig 8 3 Irrelevant 333 8e Irrelevant 2388
o2 H.T= [SRons 2 H. .= 565 o He-oees 202
o s & . s I, a© g° o
Time from Time from Time from Time from : Time fi
Time from ime from i
GolL pulse pulse Gol pulse pulse Golo pulse pulse g;::r?“ec's” Slow

Fig.2|Context-dependent evidence selectioncanbedissectedinto three
components. a, The stimulus provides a train of go-left (down arrow) versus
go-right (up arrow) pulses of LOC evidence (top) and FRQ evidence (bottom).
Pulses of relevant evidence must move the system’s position along the choice
axis, whereasirrelevant evidence should have negligible effect. b, The final
effect ofasingle pulse of evidenceis equal to the dot product of the selection
vector sy and theinput vector igg . Intheirrelevant context, the pulse effect
equals Sgg - ijrg- €, TOsolve the task, relevant evidence must have alarger effect
thanirrelevantevidence. This canberewritten as the sum of three components,
spanningthe space of possible solutions. A indicates difference across
contexts; barindicates mean across contexts.d, ThelIMis achangeininput
across contexts, orthogonal to the choice axis. Bottom left, the projection onto
the choice axisisinitially identical across contexts, differing only after the

inthe two contexts; similarly, context-dependent modulation of early
sensory responses®® % could lead the directionialong which a pulse of
agivenfeature perturbs the systemto be differentin the two contexts.
Thus, indicating relevant versus irrelevant context with a subscript
(SgeL Versus S;gg and igg, Versusigg forrelevant versusirrelevant, respec-
tively), the general condition for a given feature’s input pulse to have
greater effect on choice when relevant versus irrelevant is:

A(s - i) =SggL * ireL ~Sire * IR >0

where A indicates difference across contexts. For each of the features
being considered (in our experiments, LOC and FRQ), this difference
A(s - i) can be rewritten as the sum of three components (Fig. 2c).

. 1 . .
A(s - i) = E(SL0C+SFRQ)' (iLoc ~iFra)

- .
s Ai
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2 N )
i As
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Input
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Selection vector
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relaxation dynamics. Bottom right, the differential pulse response (the
difference across contextsin the projection onto the choice axis of the response
toapulse) increases gradually from zero. e, The SVM describes changes across
contextsintherecurrentdynamics. Asind, the differential pulse responseis
initially zero and increases only after the relaxation dynamics. f, The DIMisa
changeintheinputvector parallel to the choice axis. Incontrast tod,e, the
differential pulse responseis non-zeroimmediately upon pulse presentation.
g, Top, allrecurrent networks that solve the task can be expressed as aweighted
sum of three components and can therefore be mapped inside atriangle with
barycentric coordinates. Bottom, the vertical axis quantifies how quickly the
differential pulse response diverges from zero. A second axis (oblique line)
captures how much the network relies on context-dependent modulation of
inputs versus context-dependent modulation of recurrent dynamics.

§'AiL + §'AiH + As-i
Indirect Direct Selection )
input input vector
modulation  modulation ~ Modulation

where the overbar symbol represents the average over the two con-
texts, A represents difference between the two contexts, and Ai, and
Ai, represent the component of Ai that is orthogonal and parallel to
the choice axis, respectively. For any given feature (here, either LOC
or FRQ), and for any given network that solves the task (and thus has
A(s - i) > 0), the percentage that each of the components contributes to
thetotal A(s - i) canbe visualized in terms of distances from the vertices
of atriangle—that s, a point in barycentric coordinates (Fig. 2g). We
emphasize thatall positions onthe triangle have A(s - i) > 0 and thusall
describe solutions; the different positions describe variations across
networks thatembody different solutions for the task. This will be a key
aspectto understanding variability across different individuals that all
solve the task. Indirect input modulation (IIM), the first component
in equation (2), is what follows if the difference across contextsis a
change in the input vector i, with the change orthogonal to the line
attractor. The directinput modulation (DIM), the second component,
follows from change in the input i that is parallel to the line attractor.



Selection vector modulation (SVM), the third component, follows
from a change in the selection vector s that represents the recurrent
dynamics in the decision-making region itself. The manner in which
each of the components of equation (2) lead to a greater change in
line attractor position for the relevant context than for the irrelevant
contextis illustrated in Fig. 2d-f.

Different positions on the triangle of Fig. 2g are not merely distinct
mathematically; they have different, and important, biological implica-
tions. First, where a network solution lies along the ‘change in inputs’
versus ‘changein dynamics’ tilted axis in Fig. 2g hasimportant anatomi-
calimplications. For networks at the ‘change in dynamics’ corner, the
anatomical locus of context-dependence must be in decision-making
regions, asitistherecurrent dynamics of these regions that differ across
contexts. By contrast, for networks at the ‘changeininputs’end of the
axis, the anatomical locus of context-dependence could be outside
decision-making regions—for example, it could lie in modulation of
responses insensory regions?®2* orin modulation of the pathways from
sensory to decision-making regions®. Second, where anetwork solution
lies along the vertical ‘fast’ versus ‘slow’ axis in Fig. 2g has both neural
and behaviouralimplications. We describe the neuralimplications first.
Networks at the slow end of the axis have 0% DIM—that is, they are all
mixtures of [IM and SVM. For both IIM and SVM, the projection of the
position of the system onto the choice axis immediately after a pulse
ofevidenceis the same for the two contexts, and the difference across
contexts develops only gradually (Fig.2d,e, ‘differential response’). By
contrast, networks at the fast end of the axis are 100% DIM, and for these
adifference across contexts in the projection onto the choice axis is
immediate (Fig. 2f). Itisin this sense that neural context-dependence
effects on the choice axis are fast at the DIM end of the axis, and slow
atthe base of the axis (s.v.mori.i.m).If behavioural choices are driven
by the position of the system on the choice axis, it follows that solution
diversity on this axis will produce consequent behavioural diversity;
we examine this idea further in Fig. 5.

Two parenthetical remarks follow from the algebraic rewriting in
equation (2). First, early gating out of irrelevantinformation (i,gg = 0) is
aspecial case within this framework, and canbe either DIM (example 1
inSupplementary Discussion) or [IM (example 2in Supplementary Dis-
cussion).Second, the direction of the line attractor enters the rewriting
onlyinthe step fromequation (1) to equation (2), when distinguishing
1IM versus DIM. This is because this step describes Ai as the sum of a
component orthogonaland acomponent parallel to a particular refer-
encedirection thatis fixed across the two contexts; here, this reference
is the direction of the line attractor. We focus here on the case where
thelineattractor directionisthe samein the two contexts for simplic-
ity and becauseitis what we found in our rat data (Fig.1) and what was
found in the monkey data*. However, equation (2) can be extended to
the case of line attractors thatare not parallel across the two contexts®™
(Discussion and Extended Data Fig. 10).

Pulse analyses distinguish solutions

Artificialmodel networks canbe used toillustrate approaches to solv-
ing the task. To find networks with many individual heterogeneous
units, as observed inthe experimental data (see for example, Extended
Data Fig. 4), Mante et al.* trained RNNs to perform the task. Using the
analyses of Fig.1d-g, they observed important similarities between the
neural trajectories in the experimental data and in the trained RNNs.
Upon analysing the linearized dynamics of the RNNs, they found that
the trained RNNs solved the task using SVM. This prompted their influ-
ential suggestion of SVM as the leading candidate for how the brain
implements context-dependent decision-making. What was unap-
preciated at the time was that the linearization that they used (‘activa-
tionspace’ linearization; see Supplementary Information, ‘Linearizing
RNN dynamicsin firing rate space versus activation space’) precluded
observinginput vector modulation (whether direct or indirect) for the

type of inputs used in their networks®. We therefore repeated their
analysis, but using a linearization (‘firing rate space’ linearization)
that does permit observing input vector modulation in these RNNs¥.
Starting from randomly chosen initial network weights, we trained
many RNNs to solve the task, analysed their linearized dynamics, and
using equation (2), plotted the position of each RNN in barycentric
coordinates. The results with the new linearization at first sight con-
firmed the essence of the conclusion of Mante et al.*, namely, that the
trained RNN solutions are densest near the SVM corner at bottom left
(Fig.3a).However, theinsightin equation (2), together with our choice
of linearization in firing rate space, also allowed us to engineer RNNs
that solve the task and lie at any chosen point within the barycentric
coordinates (Methods)—that is, we are no longer constrained to exclu-
sively examine the set of RNN solutions that are produced through
training. Surprisingly, we found that SVM is not required to produce
trajectories such asthosein Fig. 1f,g. Instead, network solutions at any
point within the barycentric coordinates, not only those close to the
SVM corner, produce traces that are qualitatively similar to the experi-
mental data (see Fig. 3d and Extended Data Fig. 6). This suggests that
analyses such as the one in Fig. 1f,g, which averages trials within each
stimulus blockin Fig. 1b, cannot readily distinguish between different
solutionsacross the barycentric coordinates of Fig. 2g—aspace that, as
described above, spans all possible solutions that are consistent with
the choice axis being parallel across the two contexts.

By contrast, the descriptions of the three componentsillustratedin
Fig. 2d-f suggest that analysing the response of the system to pulses
of evidence would better distinguish different solutions—an analysis
thatour pulse-based taskis well suited to. A full characterization would
require an estimate of each of the dynamics selection vectors sgg; and
sirr, Which unfortunately are not directly observable. Nevertheless,
the direction of the choice axis is straightforwardly estimated (Fig.1),
makingthe projection of the system’s state onto the choice axis areadily
assayed measure. Figure 2d-f, bottomright shows that the difference
across contexts of the time evolution of this projection (the differential
pulse response) can serve as an assay of the percentage of DIM in the
solution because it can distinguish solutions along the fast versus slow
axis of Fig. 2g. This isillustrated in Fig. 3 using engineered RNNs, for
which we can analytically compute their position on the barycentric
coordinates (Fig. 3b) and can also directly measure the differential pulse
response (Fig. 3e and Methods). As a summary of the temporal shape
ofthe differential pulse response, we use the slope of astraight-line fit
toit (slope index; Methods); the smallest slope index corresponds to
Fig. 3f, top, and the largest slope index corresponds to Fig. 3f, bottom.
Figure 3g confirms thatin the RNNs, this slope index canbe used as a
measure of a network solution’s position on the fast versus slow axis.
On the basis of previous approaches®, we developed kernel-based
regression methods to measure the differential pulse response from
neural activity recorded experimentally, and validated these methods
in the RNNs (compare Fig. 3e,f). We then applied them to experimen-
tal data from each of our seven rats and for each of the LOC and FRQ
features (Fig.3h). Of note, we did not find that a particular slope index
consistently characterized solutions across rats. Instead, there was
high variability across rats in this measure, and even across features
within asingle rat; no apparent correlation between the LOC and FRQ
slopeindices was visible (Fig. 3h, top right).

Linking neural and behaviour variability

A widespread hypothesis in the field is that behavioural choices are
driven by the system’s position on the choice axis?* . If this is cor-
rect, then fast versus slow context-dependent effects on the choice
axis, as produced by large versus small DIM percentages (Fig. 3e,f),
should have corresponding behavioural correlates. To assess the effect
on behavioural choices of pulses at different times of a trial, we used
logistic regression to compute behavioural kernels for LOC and FRQ
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Fig.3|Backpropagation-trained RNNs explore asubset of possible
solutions, whereas engineered RNNs span the full solution space, matching
heterogeneity in experimental data. a, Distribution of1,000 RNNs trained
using backpropagationthroughtime: networks favoured SVM, as found in Mante
etal.*.b,RNNs canbeengineered to lie anywhere in the space of solutions
(Extended DataFig. 6), including, as shown here, the vertical axis, from 0%
to100% DIM. c-f, Each row analyses asingle trained RNN, with different rows
having different DIM percentages, asindicated inb. ¢, Networks across the O to
100% DIM axis perform the task with psychometric curves qualitatively similar
to experimental data (Fig. 1c). d, All of the networks have neural activity that
produces TDRtraces thatare qualitatively similar to the experimental data
(compare with Fig.1f,g). e, In contrast to c,d, differential pulse responses

evidenceineach of the two LOC and FRQ contexts; each these kernelsis
ameasure, frombehavioural data, of the relative weight that evidence
presented across different time points of a trial has on the subject’s
choices (Methods). For a given feature, either LOC or FRQ, we refer to
the difference across contexts as the differential behavioural kernel
(panels along vertical and horizontal axes of Fig. 4; Extended Data
Fig.3). The shape of anindividual’s differential behavioural kernel for
one feature did not appear to predict the shape of the kernel for the
other feature (Fig. 4, top right), similar to our finding with the neural
differential pulse responses (Fig.3h). Nevertheless, the theory predicts
that neural differential pulse responses and differential behavioural
kernels should be tightly linked. Figure 5a,b illustrates the concept.
We use the simplifying assumption that the neural differential pulse
response (Fig.3) does not depend on time withinatrial or on previously
presented evidence (datasupporting this assumption are in Extended
DataFig.7g).If Tisthe time at which position onthe choice axis is read
outto committoaright versusleft choice, then the context-dependent
differencein theimpact onbehavioural choices of a pulse at time ¢ will
follow the neural differential pulse response at aninterval T -t after
the pulse. For DIM, with adifferential pulse response that isimmediate
and sustained (Fig. 3e,f, top), the differential behavioural effect of a
pulse should then be the same whether it is presented close to or long
before the choice commitment time T, producing a flat differential
behavioural kernel (thatis, slopeindex = O; Fig. 5a). However, for SVM
or [IMwith differential pulse responses that grow only gradually from
zero (Fig.3e,fbottom), the differential behavioural effect of a pulse will
besmallif presented shortly before choice commitment, and larger if
presented longer before. This should resultin a converging differential
behavioural kernel (slopeindex > O; Fig. 5b). In other words, the shape of
the differential behavioural kernel should be the reflection onthe time
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(asinFig.2d-f) distinguish the different RNNs. f, Estimation of the differential
pulseresponses using kernel regression methods applicable to experimental
data (Methods) match the calculated differential pulse responses fromd.

g, Theslopeindex (Methods) quantifies the slope of the traces. Applied to
theestimated differential pulse responsesine, it hasamonotonic relationship
with DIM percentage, and therefore can be used as a proxy measure for DIM
percentage. h, Differential pulse responses estimated from experimental data
foreach of the FRQ (bottom) and LOC (left) features, with the corresponding
parallelindices plotted against each other (top right). Arrows point to the parallel
index value of each of the examples shown. Error barsindicate bootstrapped
standard errors. Datafromn=7recordedrats.

axis of the differential pulse response. These two very different types of
measures—behavioural versus neural—are thus predicted to have the
sameslopeindex (but with opposite sign). We tested this prediction on
RNNs engineered to solve the task using different amounts of DIM As
predicted, the slope indices of the two different measures were tightly
anti-correlated (Fig. 5¢c). We then tested whether asimilar relationship
existed for therats’behavioural and neural experimental data. To avoid
any spurious correlations, we used different sets of pulses to assay each
measure: we used pulses from the first half of the stimulus to measure
the neural differential pulse response, and pulses from the second half
of the stimulus to measure the differential behavioural kernel. We found
robust support in the data for the theoretical prediction that the two
measures should be correlated (Fig. 5d, r=-0.73, P< 0.01), with the
correlation also holding for LOC evidence alone (r=-0.71, P<0.1) or
for FRQ evidence alone (r=-0.71, P< 0.1). Thus, although there is no
correlation within the neural measure (Fig. 3h) or within the behav-
ioural measure (Fig. 4), and although the two measures were assayed
onentirely different sets of pulses, the theoretical prediction that they
should be strongly correlated was confirmed (Fig. 5d). These results
supportboththe overall theoretical framework, whichwasbuilt around
theline attractor hypothesis for the choice axis from which behaviour
isread out, and the idea that variability in a solution’s position in the
barycentric coordinates of Fig. 2g is the common source underlying
and explaining the neural and behavioural variability in Figs.3h and 4.

Discussion

Aninfluential conceptual approach known as ‘computation through
dynamics®*% has posited that an understanding of neural activ-
ity from a mathematical dynamical systems perspective will enable
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startof the auditory pulse trains (¢ = 0) to theirend (¢ =1.3 s). Figure conventions
asinFig.3h,butthe datahereare behavioural, not neural.n=18rats.

explanation of high-level phenomena such as cognition. Our work
supports this view: starting from the longstanding hypothesis that
decision evidence accumulation occurs alongaline attractor (aconcept
drawn from dynamical systems; Supplementary Information), with the
system’s position on this line attractor driving choice behaviour, and
adding an algebraic rewriting of how the linearized dynamics around
such an attractor would differ across two contexts, we developed a
theory that describes and accounts for the variability in the properties
of different solutions used by equally well-performingindividuals. The
theory predicted a tight link between otherwise disparate neural and
behavioural measurements. This prediction was then found to be well
supported in the data across multiple animals.

Theapproachled to multipleinsights: theoretical insights, defining
the space of possible solutions (Fig. 2g); biological insights, describing
the behavioural, neural and anatomical implications of the different
solutions; conceptual insights, identifying the underlying source that
links neural and behavioural variability (Fig. 5); and technical insights,
enabling us to engineer RNNs that could not be constructed before,
spanning the full space of solutions (Fig. 3a,b).

We describe our theoretical work as a ‘framework’ because it does
not specify particular network implementations. Instead, it defines
axes onto which all possible dynamical solutions can be projected
and described, with the position of a solution on this space quan-
tifying how pulse-evoked dynamics change across contexts. The
different components of the barycentric coordinates of Fig. 2g can
also be viewed in terms of an associated latent circuit that clearly
separates each component (Extended Data Fig. 9). Each point in the
space constrains features of the circuits that map to it, but each point
could nevertheless be implemented in multiple ways. Recent com-
putational work has described several different implementations
of context-dependent decision-making in RNNs**7 (but see ref. 36
regarding ref. 35). Since the barycentric coordinates of Fig. 2g can
be used to describe any network that solves the task with line attrac-
tors that are parallel across contexts (and see Extended Data Fig. 10
otherwise), all of the networks inrefs. 4,33-35 can be located on those

coordinates. The rank 1 networks described in ref. 33 map onto points
lying exclusively along the right edge of the triangle of barycentric
coordinates in Fig. 2g (the input modulation edge). This is because
networks with a non-zero SVM component require rank 2 or higher
(Supplementary Information). Theidealized latent network solution
of ref. 34 (their fig. 3b) maps onto the bottom right corner of Fig. 2g
(100% IIM). The recurrent network version of ref. 35 (their fig. SSH),
which modulates the linearized inputs and the recurrent dynamics
equally, maps ontoapointat the centre of the left edge of the triangle.
Finally, as described in Fig. 3, ref. 4 maps onto the bottom left corner
(100% SVM). All three of refs. 4,34,35 each describe solutions that
cover only arestricted region of the barycentric coordinates, and
therefore donotaddress the variability we observed acrossindividuals
(see Supplementary Information for more on the relationship between
refs. 33-35 and our work).

Ourworkalso provides a cautionary note, highlighting the fact that
trained RNNs, which are commonly used to model brain function**”*?,
need not comprise the full set of solutions consistent with the bio-
logical data. We found that training led towards only one corner of the
full space of solutions (Fig. 3a). It was a deeper understanding of the
mathematics behind solutions (equations (1) and (2)), not the use of
trained networks, that enabled us to engineer data-compatible RNNs
across the full space of solutions (Fig. 3b-f and Extended Data Fig. 6).

The interactions between afferent input signals and recurrent
dynamics are a key part of understanding context-dependent com-
putations. This view is closely related to the alignment of inputs and
dynamics recently reported for sensory learning*. For example, large
context-dependent changesinthe sensoryinput (thatis, alarge A;in
equation (1)) are not sufficient to conclude that those context-depend-
entchanges ininputs drive context-dependent decision-making: only
those input changes that are aligned to s, the average direction in
neural space representing the recurrent dynamics, will produce a
context-dependent effect on decisions (through ;- s). For the same
reason, we note that although our data (Fig. 1) and that of ref. 4 are
not compatible with ‘early gating’ (that s, blockingirrelevant evidence
from reaching decision-making regions), the data are nevertheless
compatible with input modulation (Fig. 3 and Extended Data Fig. 6).
Several further studies have also provided evidence against early
gating>®** but there are nevertheless multiple studies providing
evidence in favour of early gating?**>*>*¢, making the issue a matter
of ongoing debate. It has been argued that early gating is indicated
by arepresentation of evidence in decision-making regions that is
weaker in the irrelevant context (that is, a smaller magnitude lil, in
our terminology)*, but example 3 in Supplementary Information
illustrates a counter-example in which the context with smaller [i| is
actually the onein whichihas alarger effect on decisions, because it
has the larger s - i; in other words, the interaction with recurrent
dynamics needs to be takeninto account before firm conclusions can
be drawn. Similar to individual variability across the vertical axis of
the solution space of Fig. 2g, which we believe is a result of all of the
encompassed solutions being capable of solving the task, solutions
with or without early gating are equally capable of solving the task
(and both lie within the framework that we describe; see examples 1
and 2 in Supplementary Information). It is thus possible that there
could be variability across tasks and individuals, and perhaps even
within them, in the use of early gating. Further work will be needed
toresolve the relative prevalence or absence of early gating.

We have focused on the case in which the choice axes of the two con-
textsare parallel to each other. Arecent study®” reported that in contrast
to the findings of ref. 4 inmonkey FEF and our findings in rat FOF, choice
axes in monkey parietal cortex rotated across two task contexts. This
motivated abroadening of our barycentric coordinates framework, and
Extended Data Fig. 10 and the discussion in Supplementary Informa-
tion describe how it can be extended to choice axes that rotate across
contexts. In that more complex case, there are four components that
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betweenrelevantand irrelevant pulses. Thus the differential effect (across
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orlIM, pulses have a differential effect on choice only after relaxation dynamics.
Pulses presented well before choice commitment have a substantially different
effect on choice across contexts (left), whereas pulses presented immediately
before choice commitmenthave notime toinduce adifferentialimpact (middle).

add uptothenet context-dependent effect, rather thanthree, and the
barycentric coordinates therefore exist in a tetrahedron instead of
atriangle. However, the core concepts of the framework remain the
same. The same study® further contrasted with the approximately
linear choice axis that we (Fig. 1e, t =0 to t =1.3 s) and others*'*?*4748
have found, in that they reported a curved choice axis due to a direc-
tionin neural space that encoded the magnitude of a trial’s difficulty,
regardless of the sign of the subject’s upcoming choice. We speculate
thatdifferences across the studies could perhaps be explained by indi-
vidual differences in the strength of difficulty encoding. In tasks or
individuals where the difficulty encoding is stronger, the curvature
would become a more important feature.

Eventhough our experiments were performed with rats, the similar-
ity in the results of behavioural (Extended Data Fig. 1c,f) and neural
(Fig.1e,f) analyses that could be carried outin common with monkeys
suggests that conclusionsreached fromrat datamay generalize to other
species. Usinghumans, arecent context-dependent decision-making
study® found that different stimulus features were processed indepen-
dently. This finding is in line with our result that rat subjects can use
separate mixtures of context-dependent components to select and
accumulate each of the two features (Figs. 3h and 4).

428 | Nature | Vol 639 | 13 March 2025

b Neural response Neural response Predicted
to early pulse to late pulse behavioural effect
Early pulse ~ Choice Choice 8
ko) commitment _ .CE’ . commitment S
TEL S 6% T O
=9% Ecw Late pulsel =2
cc D0 0 c
209 E=Re] — 00
3388 £ £3
585° 55 55°
= Time to stim end Time to stim end E Time to stim end
d
Neural Rat data ﬂr Rat 1
/\ Rat 2
0 ‘\ 204 [JRat3
O Rat 4
o 1.5 < Rat5
£ % é\_’ —v— < Rat 6
5 —
So L ﬁ 3 10 A 4 {>Rat7
25 0 8 Loc
£8 2z 05 FRQ
Q.2 © - q
— 0 S—>
g5 @ 3
S ' . z
o — 0,
o I
a 0
-0.5 4
Aay od —/ -1.0 . ;
15 T\1 0 T—\o T\ 05 1.0
0
0 0.65 | IBehawour slope |ndex\
Time from _ |
puse(s) ST, [VEk «.\(» -
c ot [
D= —
£58 t?j;, b ot
= 53 \
< 065
Time relative Behavioural

to stim end (s)

Gradually diverging neural differential pulse responses thus resultin gradually
converging differential behavioural kernels (right panel). ¢, Datafromn =30
engineered RNNs spanning the vertical axis of the barycentric coordinates
(colours as Fig.3b). Left, examples of neural differential pulse kernels (as in
Fig.3e-h), eachfromasingle RNN. Bottom, examples of differential behavioural
kernels (asin Fig.4). RNN models follow the theoretical prediction, with anti-
correlated slopeindices for neural differential pulse kernels and differential
behavioural kernels. d, Experimental data (conventions asin c). Data follow the
theoretical prediction, with anti-correlated slope indices for behavioural and
neural measures. Shapes of individual data points indicate LOC and FRQ features
foreachofthenn=7rats.Error barsare centred around the mean and indicate
bootstrappedstandarderrors.

Electrophysiological studies are frequently centred on findings that
are similar across subjects, and it is common practice to report the
result foran‘average’ subject. However, our results reveal asurprising
degree of heterogeneity across, and even within, individual subjects,
underscoring the importance of characterizing the computations
used by each individual®. This issue may be of particular importance
for cognitive computations, which are largely internal and therefore
potentially subject to substantial covert variability across subjects.
Here, studying how computations vary across subjects was made pos-
sible by two key methodologies: (1) an efficient, automated procedure
to train a sufficient number of rats’; and (2) characterization of the
computations of each individual by leveraging the statistical power
afforded by arandomly timed, pulse-based stimulus®.

Alimitation of our analyses of the experimental data is that we are
currently unable to discriminate between mechanisms that rely on
context-dependent changes of recurrent dynamics (SVM) versus
changes in the linearized sensory inputs (input vector modulation—
thatis, the oblique axisin Fig.2g, bottom). A full characterization of the
relevant neural dynamics will require estimation of the selection vector
s for each context. Simultaneous recordings from large neural popu-
lations, combined with the application of recently developed latent



dynamics estimation methods such as LFADS (latent factor analysis via
dynamical systems)* or FINDR (flow-field inference from neural data
using deep recurrent networks)®, may prove instrumental in future
work in this direction. Another potential limitation stems from the
possibility that recurrent dynamics might evolve more rapidly** than
the current time resolution in our measurements, leaving us unable to
discriminate between contextual input modulation and fast recurrent
modulation. However, our results indicate that our analyses quantified
the speed of evidence selection as smoothly varying across subjects
(Figs.3hand 4 and Extended Data Fig. 8), suggesting thatin most sub-
jects dynamics are slow enough to be captured with our method.

Insum, our work provides ageneral framework to describe and inves-
tigate artificial and biological networks for flexible decision-making,
and enables cellular-resolution study of individual variability in the
neural computations that underlie higher cognition.

Online content

Anymethods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competinginterests; and statements of data and code availability
are available at https://doi.org/10.1038/s41586-024-08433-6.

1. Okazawa, G. & Kiani, R. Neural mechanisms that make perceptual decisions flexible.
Annu. Rev. Physiol. https://doi.org/10.1146/annurev-physiol-031722-024731 (2022).

2. Livneh, Y. et al. Homeostatic circuits selectively gate food cue responses in insular cortex.
Nature 546, 611-616 (2017).

3. Sarel, A. et al. Natural switches in behaviour rapidly modulate hippocampal coding.
Nature 609, 119-127 (2022).

4. Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation
by recurrent dynamics in prefrontal cortex. Nature 503, 78-84 (2013).

5. Siegel, M., Buschman, T. J. & Miller, E. K. Cortical information flow during flexible
sensorimotor decisions. Science 348, 1352-1355 (2015).

6. Sasaki, R. & Uka, T. Dynamic readout of behaviorally relevant signals from area MT during
task switching. Neuron 62, 147-157 (2009).

7.  Gold, J. 1. &Shadlen, M. N. The neural basis of decision making. Annu. Rev. Neurosci. 30,
535-574 (2007).

8.  Brody, C.D. &Hanks, T. D. Neural underpinnings of the evidence accumulator. Curr. Opin.
Neurobiol. 37,149-157 (2016).

9. Brunton, B. W., Botvinick, M. M. & Brody, C. D. Rats and humans can optimally accumulate
evidence for decision-making. Science 340, 95-98 (2013).

10. Erlich, J. C., Bialek, M. & Brody, C. D. A cortical substrate for memory-guided orienting in
the rat. Neuron 72, 330-343 (2011).

1. Hanks, T. D. et al. Distinct relationships of parietal and prefrontal cortices to evidence
accumulation. Nature 520, 220-223 (2015).

12.  Leonard, C. M. The prefrontal cortex of the rat. I. Cortical projection of the mediodorsal
nucleus. Il. Efferent connections. Brain Res. 12, 321-343 (1969).

13.  Sinnamon, H. M. & Galer, B. S. Head movements elicited by electrical stimulation of the
anteromedial cortex of the rat. Physiol. Behav. 33, 185-190 (1984).

14. Aoi, M. C., Mante, V. & Pillow, J. W. Prefrontal cortex exhibits multidimensional dynamic
encoding during decision-making. Nat. Neurosci. 23, 1410-1420 (2020).

15. Okazawa, G., Hatch, C. E., Mancoo, A., Machens, C. K. & Kiani, R. Representational
geometry of perceptual decisions in the monkey parietal cortex. Cell 184, 3748-3761.e18
(2021).

16. Charlton, J. A. & Goris, R. L. T. Abstract deliberation by visuomotor neurons in prefrontal
cortex. Nat. Neurosci. 27, 1167-1175 (2024).

17.  Luo, T. Z. et al. Transitions in dynamical regime and neural mode underlie perceptual
decision-making. Preprint at bioRxiv https://doi.org/10.1101/2023.10.15.562427 (2023).

18. Vyas, S., Golub, M. D., Sussillo, D. & Shenoy, K. V. Computation through neural population
dynamics. Annu. Rev. Neurosci. 43, 249-275 (2020).

19. Seung, H.S. How the brain keeps the eyes still. Proc. Natl Acad. Sci. USA 93, 13339-13344
(1996).

20. Barbosa, J. et al. Early selection of task-relevant features through population gating.

Nat. Commun. 14, 6837 (2023).

21.  Reynolds, J. H. & Chelazzi, L. Attentional modulation of visual processing. Annu. Rev.
Neurosci. 27, 611-647 (2004).

22. Noudoost, B., Chang, M. H., Steinmetz, N. A. & Moore, T. Top-down control of visual
attention. Curr. Opin. Neurobiol. 20, 183-190 (2010).

23. Maunsell, J. H. R. & Treue, S. Feature-based attention in visual cortex. Trends Neurosci. 29,
317-322 (2006).

24. Wimmer, R. D. et al. Thalamic control of sensory selection in divided attention. Nature
526, 705-709 (2015).

25. Servan-Schreiber, D., Printz, H. & Cohen, J. D. A network model of catecholamine effects:
gain, signal-to-noise ratio, and behavior. Science 249, 892-895 (1990).

26. Pagan, M., Valente, A., Ostojic, S. & Brody, C. D. Brief technical note on linearizing
recurrent neural networks (RNNs) before vs after the pointwise nonlinearity. Preprint at
https://doi.org/10.48550/arXiv.2309.04030 (2023).

27. Maheswaranathan, N. & Sussillo, D. How recurrent networks implement contextual
processing in sentiment analysis. Preprint at https://doi.org/10.48550/arXiv.2309.04030
(2020).

28. Park, I. M., Meister, M. L. R., Huk, A. C. & Pillow, J. W. Encoding and decoding in parietal
cortex during sensorimotor decision-making. Nat. Neurosci. 17, 1395-1403 (2014).

29. Peixoto, D. et al. Decoding and perturbing decision states in real time. Nature 591, 604-609
(2021).

30. Kurikawa, T., Haga, T., Handa, T., Harukuni, R. & Fukai, T. Neuronal stability in medial frontal
cortex sets individual variability in decision-making. Nat. Neurosci. 21, 1764-1773 (2018).

31.  Orlandi, J. G., Abdolrahmani, M., Aoki, R., Lyamzin, D. R. & Benucci, A. Distributed context-
dependent choice information in mouse posterior cortex. Nat. Commun. 14, 192 (2023).

32. Hopfield, J. J. Neurons with graded response have collective computational properties
like those of two-state neurons. Proc. Natl Acad. Sci. USA 81, 3088-3092 (1984).

33. Dubreuil, A., Valente, A., Beiran, M., Mastrogiuseppe, F. & Ostojic, S. The role of population
structure in computations through neural dynamics. Nat. Neurosci. 25, 783-794 (2022).

34. Langdon, C. & Engel, T. A. Latent circuit inference from heterogeneous neural responses
during cognitive tasks. Preprint at bioRxiv https://doi.org/10.1101/2022.01.23.477431 (2022).

35. Flesch, T, Juechems, K., Dumbalska, T., Saxe, A. & Summerfield, C. Orthogonal
representations for robust context-dependent task performance in brains and neural
networks. Neuron 110, 1258-1270.e11 (2022).

36. Flesch, T. etal. Are task representations gated in macaque prefrontal cortex? Preprint at
https://doi.org/10.48550/arXiv.2306.16733 (2023).

37. Duan, C. A. etal. Collicular circuits for flexible sensorimotor routing. Nat. Neurosci. 24,
1110-1120 (2021).

38. Perich, M. G. & Rajan, K. Rethinking brain-wide interactions through multi-region ‘network
of networks’ models. Curr. Opin. Neurobiol. 65, 146-151(2020).

39. Orhan, A.E. & Ma, W. J. A diverse range of factors affect the nature of neural representations
underlying short-term memory. Nat. Neurosci. 22, 275-283 (2019).

40. Wang, J., Narain, D., Hosseini, E. A. & Jazayeri, M. Flexible timing by temporal scaling of
cortical responses. Nat. Neurosci. 21, 102-110 (2018).

41.  Sohn, H., Narain, D., Meirhaeghe, N. & Jazayeri, M. Bayesian computation through cortical
latent dynamics. Neuron 103, 934-947.e5 (2019).

42. Remington, E. D., Narain, D., Hosseini, E. A. & Jazayeri, M. Flexible sensorimotor
computations through rapid reconfiguration of cortical dynamics. Neuron 98, 1005-1019.e5
(2018).

43. Chadwick, A. et al. Learning shapes cortical dynamics to enhance integration of relevant
sensory input. Neuron 111, 106-120.e10 (2023).

44. Rodgers, C. C. & DeWeese, M. R. Neural correlates of task switching in prefrontal cortex
and primary auditory cortex in a novel stimulus selection task for rodents. Neuron 82,
1157-1170 (2014).

45. Takagi, Y., Hunt, L. T., Woolrich, M. W., Behrens, T. E. & Klein-Fliigge, M. C. Adapting non-
invasive human recordings along multiple task-axes shows unfolding of spontaneous and
over-trained choice. eLife 10, e60988 (2021).

46. Barbosa, J. et al. Early selection of task-relevant features through population gating.

Nat. Commun. 14, 6837 (2023).

47. Li,N., Daie, K., Svoboda, K. & Druckmann, S. Robust neuronal dynamics in premotor
cortex during motor planning. Nature 532, 459-464 (2016).

48. Ni, A. M., Ruff, D. A., Alberts, J. J., Symmonds, J. & Cohen, M. R. Learning and attention
reveal a general relationship between population activity and behavior. Science 359,
463-465 (2018).

49. Ritz, H. & Shenhav, A. Humans reconfigure target and distractor processing to address
distinct task demands. Psychol. Rev. 131, 349 (2024).

50. Prinz, A. A., Bucher, D. & Marder, E. Similar network activity from disparate circuit
parameters. Nat. Neurosci. 7, 1345-1352 (2004).

51.  Pandarinath, C. et al. Inferring single-trial neural population dynamics using sequential
auto-encoders. Nature Methods 15, 805-815 (2018).

52. Kim, T. D. et al. Flow-field inference from neural data using deep recurrent networks.
Preprint at bioRxiv https://doi.org/10.1101/2023.11.14.567136 (2023).

53. Murphy, B. K. & Miller, K. D. Balanced amplification: a new mechanism of selective
amplification of neural activity patterns. Neuron 61, 635-648 (2009).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution

BY 4.0 International License, which permits use, sharing, adaptation, distribution

and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence,
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

Nature | Vol 639 | 13 March 2025 | 429


https://doi.org/10.1038/s41586-024-08433-6
https://doi.org/10.1146/annurev-physiol-031722-024731
https://doi.org/10.1101/2023.10.15.562427
https://doi.org/10.48550/arXiv.2309.04030
https://doi.org/10.48550/arXiv.2309.04030
https://doi.org/10.1101/2022.01.23.477431
https://doi.org/10.48550/arXiv.2306.16733
https://doi.org/10.1101/2023.11.14.567136
http://creativecommons.org/licenses/by/4.0/

Article

Methods

Subjects

All animal use procedures were approved by the Princeton Univer-
sity Institutional Animal Care and Use Committee (IACUC) and were
carried outin accordance with NIH standards. All subjects were male
Long-Evans rats between the ages of 6 and 24 months, that were kept
onareversed light-dark cycle. All training and testing procedures were
performed during the dark cycle. Rats were placed onarestricted water
schedule to motivate them towork for awater reward. A total of 26 rats
were used for the experiments presented in this study. Of these, 7 rats
were used for electrophysiology recordings, and 3 rats were implanted
with optical fibres for optogenetic inactivation.

Behaviour

Allratsincluded inthis study were trained to perform a task requiring
context-dependent selection and accumulation of sensory evidence
(Fig.1a). The task was performed in a behavioural box consisting of
three straight walls and one curved wall with three nose ports. Each
nose portwas equipped withan LED to deliver visual stimuli,and with
aninfrared beam to detect the rat’s nose when entering the port. In
addition, above the two side ports there were speakers to deliver sound
stimuli, and water cannulas to deliver awater reward. At the beginning
ofeachtrial, rats were presented with an audiovisual cue indicating the
context of the current trial, either LOC context or FRQ context. The
context cues consisted of 1-s-long, clearly distinguishable frequency
modulated sounds, and in addition the LOC context was signalled by
turningonthe LEDs of all three ports, whereasin the FRQ context only
the centre LED was turned on. After the end of the context cue, therats
were required to place their nose into the centre port. While maintain-
ingfixationinthe centre port, rats were presented withal.3-s-long train
of randomly timed auditory pulses. Each pulse was played either from
the speakertotherat’sleft or fromthe speakerto their right,and each
pulse a5-ms pure tone with either low frequency (6.5 kHz) or high fre-
quency (14 kHz). The pulse trains were generated by Poisson processes
with different underlyingrates. The strength of the location evidence
was manipulated by varying the relative rate of right versus left pulses,
andthestrength of the frequency evidence was manipulated by varying
the relative rate of high versus low pulses (Fig. 1b). The overall pulse
rate was kept constantat 40 Hz. Inthe LOC context, rats were rewarded
if they turned, at the end of the stimulus, towards the side that had
played the greater total number of pulses, ignoring the frequency of
the pulses. Inblocks of frequency trials, rats were rewarded for orient-
ingleftif the total number of low-frequency pulses was higher than the
total number of high-frequency pulses, and orienting right otherwise,
ignoring the location of the pulses. The context was kept constant in
blocks of trials, and block switches occurred after a minimum of 30
trials per block, and when a local estimate of performance reached a
threshold of 80% correct. Behavioural sessions lasted 2-4 h, and rats
performed on average 542 trials per session. On average, rats switched
across 14.6 context blocks per session.

Electrophysiology

Tetrodes were constructed using nickel/chrome alloy wire, 12.7 um
(Sandvik Kanthal), and were gold-plated to 200 kQ at 1 kHz. Tetrodes
were mounted onto custom-made drives* (Extended Data Fig. 4a,b),
and the microdrives were implanted using previously described surgi-
cal stereotaxic implantation techniques". Five rats were implanted with
bilateral electrodes targeting FOF, centred at +2 mm anteroposterior
(AP), £1.3 mm mediolateral (ML) from bregma, while two rats were
implanted with bilateral electrodes targeting the prelimbic area of
mPFC, with coordinates +3.2 mm AP, £0.75 mm ML from bregma. In 1
ratwithanimplantin FOF, 16 tetrodes were connected to a 64-channel
electronic interface board, and recordings were performed using a
wired setup (Open-Ephys). Inthe other 6 rats, 32 tetrodes per rat were

connected to a128-channel electronicinterface board and recordings
were performed using wireless headstages (Spikegadgets; Extended
DataFig. 4d).

Optogenetics

Preparation of chemically sharpened optical fibres (0.37 NA, 400 um
core; Newport) and basic virus injection techniques were the same as
previously described". At the targeted coordinates (FOF, +2 mm AP,
+1.3 mm ML from bregma), injections of 9.2 nl of adeno-associated
virus (AAV) (AAV2/5-mDIx-ChR2-mCherry, three rats) were made every
100 pmindepthfor 1.5 mm. Four additional injection tracts were com-
pleted at coordinates 500 um anterior, 500 pm posterior, 500 pm
medial and 500 pm lateral from the central tract. In total, 1.5 pl of virus
wasinjected over approximately 30 min. Chemically sharpened fibres
were lowered down the central injection track. Virus expression was
allowed to develop for eight weeks before optogenetic stimulation
began. Optogenetic stimulation was delivered at 25 mW using a cus-
tomized wireless system derived from the Cerebro system>*¢ (https://
karpova-lab.github.io/cerebro; Extended Data Fig. 4c,e).

Analysis of behaviour

All code for data collection was written in Matlab 2019b. Data was
extracted from all behavioural sessions in which rats’ fraction of cor-
rect responses was equal or above 70%, feature selection index (see
below) was equal or above 0.7, and in which rats performed at least
100 trials. Analysis of behaviour was performed for all rats with elec-
trophysiology or optogenetics implants, as well as for all other rats
that performed at least 120,000 valid trials—that is, where the rat
maintained fixation for the full duration of the pulse train before mak-
ingadecision. Psychometric curves (Fig.1cand Extended Data Fig. 3)
were used to display the fraction of rightward choices as a function
of the difference between the total number of right pulses and left
pulses (location evidence strength), and as a function of the difference
between the total number of high pulses and low pulses (frequency
evidencestrength). These curves were fit to a four-parameter logistic
function’:

a
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To quantify whether a rat selected the contextually relevant evi-
dencetoformits decisions onagivensession, we computed afeature
selection index. For this purpose, we performed a logistic regres-
sion for each of the two contexts, where the rat’s choices were fit as
afunction of the strength of location and frequency evidence. For
each context, we considered all valid trials, and we compiled therat’s
choices, as well as the strength of location and frequency evidence.
Thevector of choices was parameterized asabinary vector (right =1;
left = 0), the strength of location evidence was computed as the dif-
ference between the rate of right and the rate of left pulses, while
the strength of frequency evidence was computed as the difference
between the rate of high-frequency and low-frequency pulses. In the
LOC context, we fit the probability of choosing right on trial k using
the logistic regression:

logit(P(right),) =SS HD K WLOC VD
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where 5S¢ VB indicates the strength of location evidence on trial k,

Strobvok indicates the strength of frequency evidence on trial &,

w'SERv istheweight of location evidence on therat’s choices, Wiy (vo.

is the weight of frequency evidence on the rat’s choices, and °<“™ s
abias term. Therelative weight of location evidence in the LOC context

was computed as
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Similarly, in the FRQ context we fit the rat’s choices as
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where sf5@S1X, indicates the strength of location evidence on trial &,

Stratvok indicates the strength of frequency evidence on trial &,

wiSESS is the weight of location evidence on therat’s choices, Wity o
is the weight of frequency evidence on the rat’s choices, and 2™ s
abiasterm. Therelative weight of frequency evidence in the FRQ con-
text was computed as
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Finally, the feature selection index was then computed as the average
betweentherelative weight of locationin the LOC context (equation (5))
andtherelative weight of frequency in the FRQ context (equation (7)):

Feature selectionindex
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The feature selection index was used to precisely quantify the rats’
learning during training, as this metric enables comparison of data
across stages with different evidence strength (Extended DataFig. 2g).
In addition, the relative weight of location and frequency were com-
puted for each rat as a function of the position of a trial within the
block (for example, immediately after a block switch, one trial after
ablock switch, and so on), providing a measure of the rats’ ability to
rapidly switch attended feature upon context switching (Extended
DataFig.1g).

Behavioural logistic regression. To quantify the dynamics of evi-
dence accumulation, behavioural data was analysed using another
logistic regression. Importantly, in equations (5) and (7) we quanti-
fied the rat’s weighting of evidence using a single number, because
we considered the generative rates—that is, the expected strength of
location and frequency evidence on a given trial. Now, we seek instead
to quantify how these weights vary throughout stimulus presentation,
by taking advantage of the knowledge of the exact pulse timing. For
each rat, data across all sessions was compiled into a single vector
of choices (right versus left), and two matrices detailing the pulse
information presented on every trial. More specifically, the choice
vector was parameterized as a binary vector (right =1; left = 0), with
dimensionality N, where Nis the total number of valid trials. Pulse
informationwas splitinto location evidence and frequency evidence,
and was binned into 26 bins with 50-ms width. For a given bin, the
amount of location evidence was computed as the natural logarithm
oftheratio between the number of right and the number of left pulses,
and was compiled in a location pulse matrix X* with dimensionality
N x26.Similarly, frequency evidence was computed as the logarithm of
theratio between high-frequency and low-frequency pulses, and was
compiled into afrequency pulse matrix X* with dimensionality N x 26.
We chose to use the logarithm of the ratio instead of the difference
because it provided a better fit to cross-validated data. To quantify
theimpact on choices of evidence presented at different time points
we fitalogistic regression, where the probability of choosing right at
trial k was given by

26
logit(P(right),) = Y Xi.-wi+Xi -wf+p 9)
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where X; , indicates the location evidence at time t on trial k, X, indi-
cates the frequency evidence at time t on trial k, w! indicates the loca-
tion weight at time ¢, w/ indicates the frequency weight at time ¢, and
findicates the bias to one particular side. Weights were fit using ridge
regression, and the ridge regularizer was chosen to optimally predict
cross-validated choices. The regression was applied separately for
trialsin the LOC context, and trials in the FRQ context, resulting in four
sets of weights computed for each rat (Supplementary Fig.1.2). To
study how evidence was differentially integrated across the two con-
texts, wethen computed adifferential behavioural kernel. Thelocation
differential kernel was equal to the difference between the location
weights computed in the LOC context, and the location weights com-
puted in the FRQ context. Similarly, the frequency differential kernel
was equal to the difference between the frequency weights computed
across the two contexts.

To quantify the shape of the differential behavioural kernels, we
computed abehavioural slope index. To obtain this, we computed the
straight line that provided the least-square fit of the difference between
the weights across the two contexts. The slope index was defined as
the slope of this fitting line.

Asaresult,aslopeindex = O indicates that the fitting lineis perfectly
horizontal (that is, the difference between the two sets of weights is
constantatalltime points), while aslopeindex <O indicatesadecreas-
ing difference between the weights across contexts, and aslope index
>0 indicates arising difference. Empirically we found that differential
behavioural kernels predominantly displayed convergence towards the
end of the pulse stimulus presentation (Fig. 4 and Extended DataFig. 8).

Analysis of neural data

Spike sorting was performed using MountainSort>, followed by manual
curation oftheresults. In total, 3,495 putative single units were recorded
from5ratsin FOF (number of unitsineachrat:2,047,832,258,94, 54),
while 210 units were recorded from 2 rats in mPFC (number of units
in eachrat: 112, 98). To measure the responses of individual neurons,
peri-stimulus time histograms were computed by binning spikes in
20-msintervals, and averaging responses for trials according to choice
and context. Responses of single neurons inboth areas were highly het-
erogeneous and multiplexed multiple types of information (Extended
DataFig. 4),and no systematic difference was found in the encoding of
task variables across the tworegions (see for example, Extended Data
Fig.5), so all studies of neural activity were carried out at the level of
neural populations, and pooling data from FOF and from mPFC.

t57

Trial-based TDR analysis of neural population dynamics. To study
trial-averaged population dynamics, we applied model-based TDR
(mTDR)", a dimensionality-reduction method that seeks to identify
the dimensions of population activity that carry information about
different task variables. This method was applied to our rat dataset, and
toreanalyse a dataset collected while macaque monkeys performed a
similar visual task* (Extended Data Fig.1). In brief, the goal of mTDRis
toidentify the parameters of amodel where the activity of each neuron
isdescribed as alinear combination of different task variables (choice,
time, context and stimulus strength). For each of these task variables,
the model retrieves a time-varying weight vector w(t) (with number
of elements, indexed by i, equal to the number of recorded neurons)
specifying the linear relationship between the value of that variable
andtheactivity of each neuron at each time point (each variable v con-
tributes an additive component v - w(¢) to the firing rate of neuron i),
and the collection of these weight vectors across all neurons are con-
strained to form a low-rank matrix. Singular value decomposition
of this low-rank weight matrix is then used to identify basis vectors



Article

that maximally encode each of the task variables. Using this method,
we identified one axis maximally encoding information about the
upcoming choice of the animal (choice axis), one axis maximally encod-
ing information about the momentary strength of the first stimulus
feature (location for rat data, motion for monkey data), and one axis
maximally encoding information about the momentary strength of
the second stimulus feature (frequency for rat data, colour for monkey
data). To study how neural dynamics evolved in this reduced space,
we first averaged the activity of each neuron across all correct trials
according tothe strength of location evidence, strength of frequency
evidence (that is, within each of the 36 blocks; Fig. 1b), and context,
and choice. For this analysis, spike counts were computed in 50-ms
non-overlappingbins with centres starting at the beginning of the pulse
train presentation and ending 50 ms after the end of the pulse train
presentation. For any given trial condition, a pseudo-population (that
is, including non-simultaneously recorded neurons) was computed
for each time point by compiling the responses of all neurons into a
single vector. The trajectory of this vector over time was then projected
on theretrieved task-relevant axes to evaluate population dynamics
(Fig.1d-g).

Pulse-based TDR analysis of neural population dynamics. To esti-
mate theimpact of evidence pulses and other task variables on neural
responses, we fit the activity of each recorded unit using a pulse-based
linear regression (Supplementary Fig. 1.1). For each neuron, spike
counts were computed in 20-ms non-overlapping bins with centres
starting 1s before the beginning of the pulse train presentation, and
ending 700 ms after the end of the stimulus presentation. The activity
of neuroniattime ton trial k was described as

1 (k) =ﬂch0ice;i’t* choice(k) +f x context(k) +

context;i,t
*+Brocioci* PUISes, oc i oK)+ By o rrayi * PUISES, o o (K)

*+ Brraoc * PUISeStrg 1 oc(K) * Brrq rraui * PUISEStrq rrq (K)

R o
time;i,t

(10)

where X...i..(k) indicates the rat’s choice on trial k (right =1, left = 0),
Xeontexc(K) indicates the context on trial k (location =1, frequency = 0),
pulses oc0c(k) indicates the signed location evidence (number of right
pulses minus number of left pulses) presented at each time bin on trial
kinthe LOC context, pulses o rro(k) indicateslocation evidence in the

FRQ context, pulsesggq,oc(k) indicates frequency evidence (number
of high pulses minus number of low pulses) in the LOC context, and
pulsesggq rro(k) indicates frequency evidence in the FRQ context. The
first three regression coefficients Benoice;i Beontext:i AN Brime; ACCOUNE
for modulations of neuron i across time according to choice, con-
text and time. The other four sets of regression coefficients S, oc,0c.ir
Broc.rra:ir Brratoc: aNd Brrg rro; indicate the effect of a pulse on the sub-
sequent neural activity, and * indicates a convolution of each kernel
with the pulse train; for example, in the case of location evidence in
the LOC context:

Biococ;i * Pulses ¢ oK) = Z Biocioc: PUlses o ocki =) (11)
meaning that the element at position 7 of kernel B, o 1oc; represents
the impact of a pulse of location evidence in the LOC context on the
activity of unit i after a time. The three kernels for choice, context
and time describe modulations from 1s before stimulus start to
0.7 s after stimulus end in 20-ms non-overlapping bins, resulting in
151-dimensional vectors. The 4 pulse kernels describe modulations
from the time of pulse presentation to 0.65 s after pulse presentation
resulting in 33-dimensional vectors. To avoid overfitting, this regression
was regularized using a ridge regularizer, as well as an L2 smoothing
prior®®. Pulse kernels were regarded as an approximation of the neural
response to each pulse type (an assumption confirmed by analysis of
RNNs) (Fig. 3e,fand Extended Data Fig. 7c,d).

We wish toemphasize that the critical difference between our previ-
ous trial-based application of TDR and the current pulse-based analysis
ismerely thatin the previous trial-based analysis, stimuliare described
as two scalar numbers, namely the expected strength of location and
frequency evidence over the entirety of a trial. That is, the analysis
ignores the precise timing of pulses. By contrast, the pulse-based analy-
sis leverages knowledge of the precise timing of evidence presenta-
tion, a feature made possible by the pulse-based nature of our task.
Besides that difference in how the stimulus regressors are treated, all
other regressors are the same in the two methods; as a consequence,
the resulting kernels are very similar across the two methods. This is
true in particular for the choice kernels, thus leading to highly similar
choice axes using either of the two methods, albeit the kernel-based
method is regularized to reduce noise (see the high degree of align-
ment between the choice axes computed using either method versus
the analytically computed line attractor direction in RNNs trained to
perform the task, Extended Data Fig. 7e). Details of the computation
of choice axis using the kernel-based are provided in ‘Estimating the
choice axis’.

Finally, we note that there is a difference between the granularity
of the neural kernels (20 ms) and the behavioural kernels (50 ms; see
‘Behaviourallogistic regression’). Inthe case of the neural analysis, we
noticed that theinitial pulse-triggered response was often very fast, and
thatashorter 20-ms time bin was best suited to allow us to capture its
shape, especially in the first time points after the pulse presentation. By
contrast, we noticed that the logistic regression was often noisier, and
required pooling over at least 50-ms time bins to prevent behavioural
kernels from being too noisy. For this reason, we decided to choose
the optimal time bin size for each method, rather than using the same
time bin for both analyses.

Estimating the choice axis

To compute the population choice axis, we compiled the choice kernels
across all neurons, limited to a time window during the presentation
ofthe pulse train stimulus (0 to 1.3 s after stimulus start), into amatrix
M_that is Npeyrons X Nemebins iN Size. The first principal component of this
matrix (that is, the first eigenvector of MM, after correcting for the
mean firing rate of each neuron), is the N, .,..ns-lONg vector in neural
space that captures the most variance across choice kernels. This vec-
tor was then taken as the choice axis. The pulse-evoked population
responses, and their projection onto the choice axis, were computed
by compiling pulse kernels across all N neurons recorded from the
samerat (Extended DataFig.5). At each pointintime, the pulse kernel
values acrossallneurons are avector N,,.nsin length; thiswas projected
onto the choice axis (which is a vector of the same length). We then
studied the time evolution of the results of this projection, which we
referred to as the ‘projection onto the choice axis of population pulse
response kernel’.

Totest whether the direction of the choice axis was different across
the two contexts, we computed the axis for each animal twice, using
data collected only from one context at at time (Fig. 1e and Extended
Data Fig. 5). To assess whether the direction of the choice axes com-
puted for each context were significantly different from each other,
for each rat we performed arandom permutation test, where on each
iteration we shuffled the context label of each trial. This label-shuffled
data becomes the null model. We then recomputed the choice axis
separately for trials labelled with each of the two contexts, and meas-
ured the angle between the two axes. Done across many shufflings, this
provided us with a distribution of the angles between choice axes to
be expected from the null model—that is, if there were no difference
across contexts.

Estimating differential neural kernels

To study the differential evolution of pulse-evoked population
responses across the two contexts, we computed a differential pulse
response. For location evidence, the differential pulse response was
defined as the difference between the projection onto the choice axis



oftheresponsetolocation pulsesin the LOC context, and the response
tolocation pulsesinthe FRQ context. For frequency evidence, the dif-
ferential pulse response was computed as the difference between the
projectiononto the choice axis of the frequency pulse responsein the
FRQ context, minus the frequency pulse response in the LOC context
(Supplementary Fig. 1.1c).

Summarizing the shape of the neural kernels in a slope index

To quantify the shape of differential pulse responses, we computed
aneural slope index. To obtain this, we computed the straight line
that provided the least-square fit of the difference between the pulse
responses across the two contexts. The slope index was defined as
theslope of this fitting line. Asaresult, aslopeindex = O indicates that
the fitting line is perfectly horizontal (that is, the difference between
the two pulse responsesis constantat all time points), aslopeindex >0
indicates arising differential response, and aslopeindex<Qindicatesa
decreasing differential response. Empirically we found that differential
pulse responses only displayed positive (or zero) slope indices—that is,
further amplifying the effect of relevant over irrelevant evidence onto
the choice axis (Fig. 3h and Extended Data Fig. 8).

Recurrent neural networks
To validate our analyses of behaviour and neural dynamics, and to
gather adeeper understanding of the mathematical mechanisms that
could underlie our rats’ context-dependent behaviour, we trained RNNs
to performapulse-based context-dependent evidence accumulation
task analogous to that performed by the rats.

The activity of the N=100 hidden units of each network (Extended
DataFig. 6a) was defined by the dynamical equations

12)

where tisthe network time constant, X is the vector of activations of
each unit, with each of its elements interpreted as roughly paralleling
the net input current to a neuron, Wis the matrix of connections
between units, i is the external input to each unit, and g() is a point-
wise nonlinearity whose outputis interpreted as roughly paralleling
the activity (firing rate) of a neuron given that neuron’s net input
current. We used g() = tanh(), but similar results should apply with
other standard nonlinearities.
Theinputi isin turn composed of several terms:

i: b + M/c .c+ wLOC. iLOC + wFRQ_ iFRQ (13)
Thefirst term, b, represents a bias to each unit that is constant across
time and trials. In the second term, cis a two-element-long column
vector that encodes current context in a one-hot manner (in the LOC

context,c= Ll)} andinthe FRQcontext,¢c= [ﬂ) The matrix W, is N x 2

insize, soitsfirst columnrepresents an additive biasto the unitsin the
LOC context whileits second columnrepresents an additive biasin the
FRQ context. In the next two terms, the time-dependent scalars i*°¢
and i"represent the momentary LOC and FRQ evidence, respectively,
withw°cand w?representing how each of those impact the units of
the network.

The output of the network was determined by a single output unit
performingalinear readout of the activity of the RNN units:

z=Wh-E+kg (14)
where w,indicatesthe N x 1vector of output weights assigned to each
hidden unitand k,is a scalar representing the output bias. The choice
of the network on a given trial was determined by the sign of z at the
last time point (7=1.3 s). During training and analysis, evolution of the
network was computed in 10-ms time steps. During training, rwas set to

10 ms, butinsubsequentanalyses twas set to 100 ms, so as toreplicate
the autocorrelation timescale observed in neural data.

Training of RNNs using backpropagation. RNNs were trained using
backpropagation through time with the Adam optimizer and imple-
mented in the Python JAX framework. The weights of the network were
initialized using a standard normal distribution, modified according
to the number of inputs to a unit, and then rescaled. If nis drawn from
astandard normal distribution 7~ N(0, 1), input weights were chosen
asn- LU; recurrent weights were chosenasn - O—ﬁ;output weights were
chosenas - ——; where Uindicates the number of inputs (U= 4) and N
indicates the number of hidden units (N =100). All the biases of the
network wereinitialized at 0. Theinitial conditions were also learned,
and were alsoinitialized randomly from a standard normal distribu-
tion, with each element of the initial condition initialized as 0.1. The
Adam parameters for training were bl1=0.9;b2 = 0.999; epsilon = 0.1.
Thelearning rate followed an exponential decay withinitial step size =
0.002, and decay factor = 0.99998. Training occurred over 120,000
batches with abatchsize of 256 trials. Using this procedure, we trained
1,000distinct RNNs to solve the task using different random initializa-
tions on each run (Fig. 3a). All networks learned to perform the task
with highaccuracy (see for example, Fig. 3c). All the code for training,
analysis and engineering of RNNs is available at https://github.com/
Brody-Lab/flexible_decision_making_rnn.

Analysis of RNN mechanisms. To analyse the linear dynamicsimple-
mented by each RNN to perform context-dependent evidence accumu-
lation, we firstidentified the fixed points of each trained network using
apreviously described optimization procedure***. We then linearized
around that fixed point, as follows.

Around any given point (¥, io), afirst-order Taylor expansion tells
us that the dynamics (equation (12)) will be approximated by

5 Asa & or
= Th(fy, 1) + T

2% 1s)

s & a* Ay
(P + Ta—;'(l—lo)

where the partial derivatives are evaluated at (f,, io). When (f,, fo) isa
fixed point, ¥(f,, iy) = 0. Using equation (12), we can obtain the derivatives

0
or
or

T+
oi

=-I1+D-W
(16)
=D

where D is a diagonal matrix that we refer to as the gain matrix, and
whose elements are given by
Dy=g'(Xy) (17)
with g’ being the derivative of the pointwise nonlinearity g() and X,
being determined by the fixed point, as they are the elements of
Xo=W-ty+1ig.
Combining equation (16) with equation (15), and changing variables to

-

.

e

r=f-
e @18)
=i- 0

—c>

we obtain the linearized dynamics

Ti=-r+D-W-r+D-i (19)

Inthe absence of sensory evidence—that s, in the silences between
clicks when i*°¢ = 0 and i"*® = 0—the fixed points of the system will be
determined by i,=b + W, - c. The fixed points are therefore context-

dependent, and as a consequence, the gain matrix D will also be
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context-dependent, since it is a function of the fixed point around
which we are linearizing (equation (17)). The context-dependence of
Diswhat leads to different linearized dynamics in the two contexts.

The linearized connectivity matrix that determines the recur-
rent dynamics, D - W, depends on D; and the linearized input vector,
D -1i,also depends on D. Thus, this formulation allows both context-
dependent modulation of the recurrent dynamics and of the input
vector.

The discussion in Supplementary Information describes how RNN
equations linearized in the activation space X, even while equivalent
tothe dynamicsused here, do not allow observing context-dependent
input modulation. This would eliminate the right and top corners of
the barycentric coordinates of Fig. 2g. Analyses linearizing in activa-
tion space X are therefore limited to describing solutions as being
100% SVM.

For each trained RNN, we focused on the analysis of the linearized
dynamics correspondingto the fixed point with the smallest absolute
network output |z| (thatis, where the network s closest to the decision
boundary), but results were similar when considering different fixed
points (thatis, linearized dynamics were mostly similar across differ-
ent fixed points). Similar to previous reports*, we found that in every
well-trained network, fixed points were roughly aligned to formaline
attractor for each of the two contexts, and that eigendecomposition
ofthe Jacobian matrix D - Wreveals a single eigenvalue close to 0, and
all other eigenvalues with a negative real value. This reflects the exist-
ence of a single stable direction of evidence accumulation (the line
attractor), surrounded by stable dynamics.

The right eigenvector associated with the eigenvalue closest to O
defined the direction of the line attractor p, while the corresponding
left eigenvector defined the direction of the selection vector s. For each
network, we computed these vectors separately for the two contexts

by setting the contextual inputcasc= [1} in the LOC context, and
c= [ﬂ inthe FRQ context, before computing the fixed points and the

eigendecomposition. As a result, for each network we computed the
line attractor in each of the two contexts, which we denote as p*°“and
P and the selection vector ineach of the two contexts (s'°“and s**?),
aswellas thelinearized input D - iin each of the two contexts (i*°“ and
i™Q), Using these quantities, we directly computed the terms in equa-
tion (2) to quantify how much each of the three components contrib-
uted to differential pulse accumulation, and we plotted the results for
1,000 RNNs in barycentric coordinates (Fig. 3a).

Engineering of RNNs to implement arbitrary combinations of com-
ponents. To engineer RNNs that would implement arbitrary combina-
tions of components, we started from the RNN solutions obtained from
standard training using backpropagation through time. For a given
trained network, we first computed the fixed points of the network and
thelinearized network dynamics, and we identified the line attractor,
selection vector and effective input across the two contexts (see above).
Because the RNN dynamics are known (equations (12) and (13)), the
linearized dynamics can be expressed in closed form as a function of
the network weights:
J

M= (')r_F =w{ o tanh’ (Wy * fiyeq + We* €+ k) (20)

F /
i:a—=wuotanh (WR " Tixeq+ We* €+ K) (21)

ou

where Mindicates the jth column of the Jacobian matrix, wy indicates
theth column of the matrix of recurrent weights, ry,.q indicates the
network activity at the fixed point, tanh’indicates the first derivative
ofthe hyperbolic tangent nonlinearity, and ® indicates the Hadamard

product or element-wise multiplication, where the elements of two
vectors are multiplied element-by-element to produce avector of the
same size. We further define the saturation factor for each of the two
contexts as:

sat, oc = tanh’(Wy * fixed Loc * We* CLoct k) (22)

Satppq = tanh’(Wy * Fixed rro * We* Crrg +K) (23)
where ry,.q,0c indicates the fixed point with the smallest absolute net-
work outputinthe LOC context, ry,.q rrq indicates the fixed point with
the smallest absolute network outputin the FRQ context, ¢, oc indicates
the contextinputinthe LOC context (1, 0), and cq indicates the context
inputinthe FRQ context (0,1). The effective input for the two contexts
can therefore be computed as:

lioc™ W, @ satyoc iprq = Wy, © Saterq (24)

The three components of context-dependent differential integration
defined in equation (2) can therefore be rewritten as a function of the
input weightsw,. The SVM, whichis equal to the dot product between
the difference in the selection vector and the average effective input,
canberewritten as:

Jhoctirrg _
2
= As-w,0sat=w,- (As©sat)

sat oct Satgpq

As-i=As 2 25)

As-w,®

wheresatindicates the average saturation factor across contexts, and
the last step takes advantage of the associative property of the Had-
amard and dot product. The DIM, which is equal to the dot product
betweenthe differenceinthe effective input and the line attractor, can
be rewritten as:

Ai-p = (ioc—iprg) P = W, © (sat gc~Saterg) ' P 26)
=w,0Asat-p = w,- (Asatop)

where Asat indicates the difference between the saturation factor

across the two contexts. The IIM, which is equal to the dot product

between the differencein the effectiveinput and the average selection

vector orthogonal to the line attractor s, can be rewritten as:

Ai-’s; = (fioc ™ frrg) * 517 W, © (sat oc ~ Satgrg) * S, 27)
=w,0Asat-5, =w, (Asato's))

Knowledge of equations (21), (22) and (23) allows us toidentify input
vectors that produce network dynamics relying on any arbitrary com-
binations of the three components. For example, producing a network
using exclusively SVM requires the first component (equation (21)) to
belarge, while the second (equation (22)) and third (equation (23))
components must be 0. In other words, the input weights w, must
satisfy:

w, - (Asosat) >0
w,- (Asatop)=0
w,-(Asatos)=0

(28)

In addition, we must also require that the network does not accu-
mulate the pulsein theirrelevant context. Because we are conducting
this analysis for pulses of location evidence, this means that the dot
product between the effective input and the selection vector in the
FRQ context should be O:

iR SrrQ= 0 = ifrq " SrrQ = W, © SatFRg * SFrQ™

29
=W, " (satprq © Spra) =0 (29)



Finally, we then use the Gram-Schmidt process to find the set of
weight w, maximally aligned to the vector As @ sat, and orthogonal
tovectorsAsat © p, Asat © 5, and satgq O Sepe. Similar considerations
canbeapplied to produce networks using different mechanisms. For
example, to engineer a network that uses only DIM the input weight
must be maximally aligned to Asat ® p and orthogonal to As © sat,
Asat © 5| and satgyq O Sgro- Engineering networks implementing com-
binations of mechanisms can be obtained by choosing the input
vector as a linear combination between extreme network solutions.
Finally, we emphasize that the mechanism chosen for one stimulus
feature (for example, location) is entirely independent from the
mechanism chosen for the other stimulus feature (for example,
frequency).

Statistical methods

Comparison of the strength of the encoding of relevant versus irrel-
evant information (Fig. 1f,g) was performed by quantifying the vari-
ability across responsesto different stimulus strengths, normalized by
trial-by-trial variability, limiting the analysis to the subspace orthogonal
to choice encoding. Error bars for neuraland behavioural kernels were
computed using bootstrapping. On each iteration of the bootstrap
procedure, we randomly resampled trials, with replacement, and we
computed the standard error as the standard deviation of the boot-
strapped values over 100 iterations.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.
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optogeneticimplant and control board. f,g) Result of inactivation of FOF. 3 rats
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indicates the choice axis computed in the given context, and above the panels
isindicated the angle between the choice axes computed across the two contexts.
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Extended DataFig. 6 | Engineered recurrent neural networks (RNNs) across

theentire solution space (Fig.2g) all qualitatively reproducerat TDR
trial-based dynamics, but are distinguished by pulse-based analysis.

a) Architecture of the RNNs. (b) TDR analysis (orange frame) and pulse-based
analysis (purple frame) applied to RNNs generated to span different points
withinthe solution space, asindicated by the RNN symbol on the barycentric
coordinates. The TDR analysis and the pulse-based analysis of one RNN at each

positionatthe very center of the triangle, three different RNNs at that position,

trained by starting from different random initial weights, are shown. AIlIRNNs
qualitatively reproduce rat TDR trial-based dynamics. The variability of trial-

positionare shown, connected to their RNN position by the arrow. For the

based TDRseen across RNNsis not predictive of the position within the solution
space, and even RNNs generated from the same point can produce variable TDR
trajectories.In contrast, the estimated pulse-triggered response reliably indicates
the position of RNNs along the vertical axis of the solution space.
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Extended DataFig.7|Validation of pulseregression method. a) Example
application of the pulse regression to one example recorded unit. (b) Fraction
of explained variance as afunction of firing rate across all recorded units.

(c,d) The pulse-regression kernels provide anaccurate estimate of the response
toasingleisolated pulse.In(c) areshowntheresponsestoasingleisolated
pulseof either location or frequency evidence in both contexts for an example
RNN unit. In (d) are shown the estimates of these pulses from the dynamics of
the RNNsolving the task with regular trials featuring many consecutive pulses
presented at 40 Hz. (e) Comparison of the direction of the true line attractor
(computed by finding the RNN’s fixed points, see methods) with the choice axis
estimated by the trial-based regression (Fig. 1f,g) and the pulse-based regression
(Fig.3). The choice axis closely approximates the direction of the true line

Time (S) Time (S)
attractor. (f) Kernels estimated using the assumption of gaussian noise closely
approximate those estimated using the assumption of Poisson noise. Kernels
areshown here for one example neuron. (g) Prediction accuracy does not
improve whentwo separate kernels are computed for the early portion of the
stimulus and the late portion of the stimulus. Here is shown the improvement
incross-validated predictionaccuracy across all recorded neurons when using
two separate kernels as compared to using a single kernel throughout the
stimulus. The significance was evaluated using a two-tailed paired-sample
t-test (p > 0.1). (h) Population pulse responses for two example rats, and
corresponding differential pulse-triggered kernels for the 10 individual neurons
with largest contributions to the choice axis.
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Extended DataFig.9|Threedistinct “languages” can capture the three
fundamental solutions to the task. a) “Linear algebralanguage”. As derived
inthe main textin Equations1and 2, the overall differential integration can be
expressed asasum of three terms. (b) “Network dynamics language”. The three
solutions are associated with distinct pulse-evoked dynamics within the space
spanned by theline attractor and the selection vector. (c) “Circuit dynamics
language”. The three solutions are associated with three different latent circuit
structures. To show this, we first note that our derivation of task solutions stems
from focusingonlinearized dynamics around fixed points of aline attractor
(Fig.2c). These linearized dynamics canbeinterpreted as an equivalent linear
circuit whose synaptic connectivity matrixis defined by the state transition
matrix (i.e. matrix Min Equation (1)). This circuit can be further simplified into
afeedforward circuit using the Schur transformation (Goldman, 2009), which

operatesachange of coordinates to transform the state transitionintoan

upper triangular form.In the resulting circuit, the first node represents the
accumulator (i.e. theline attractor), and it receives feed-forward inputs from
the othernodes of the circuit. Our three solutions canbeinterpreted asthree
different ways tomodulate the connectivity of this circuit across the two contexts.
Inthe case of “direct input modulation”, itis the input to the accumulator node
that varies across contexts. In the case of “indirect input modulation”, itis the
input to the other nodes that changes across contexts, and this differential
inputeventually reaches theaccumulator through the feed-forward connections.
Finally, inthe case of “selection vector modulation”, theinput to allnodes stays
the same across contexts, but the feed-forward connections between the other
nodes and the accumulator node change across contexts.
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