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Individual variability of neural computations 
underlying flexible decisions

Marino Pagan1,2 ✉, Vincent D. Tang1, Mikio C. Aoi1,3, Jonathan W. Pillow1, Valerio Mante4,5, 
David Sussillo6,7 & Carlos D. Brody1,8 ✉

The ability to flexibly switch our responses to external stimuli according to contextual 
information is critical for successful interactions with a complex world. Context- 
dependent computations are necessary across many domains1–3, yet their neural 
implementations remain poorly understood. Here we developed a novel behavioural 
task in rats to study context-dependent selection and accumulation of evidence for 
decision-making4–6. Under assumptions supported by both monkey and rat data, we 
first show mathematically that this computation can be supported by three dynamical 
solutions and that all networks performing the task implement a combination  
of these solutions. These solutions can be identified and tested directly with 
experimental data. We further show that existing electrophysiological and modelling 
data are compatible with the full variety of possible combinations of these solutions, 
suggesting that different individuals could use different combinations. To study 
variability across individual subjects, we developed automated, high-throughput 
methods to train rats on our task and trained many subjects using these methods. 
Consistent with theoretical predictions, neural and behavioural analyses revealed 
substantial heterogeneity across rats, despite uniformly good task performance.  
Our theory further predicts a specific link between behavioural and neural signatures, 
which was robustly supported in the data. In summary, our results provide an 
experimentally supported theoretical framework to analyse individual variability in 
biological and artificial systems that perform flexible decision-making tasks, open  
the door to cellular-resolution studies of individual variability in higher cognition, 
and provide insights into neural mechanisms of context-dependent computation 
more generally.

We are often required to use context or top-down goals to select  
relevant information from a sensory stream, ignore irrelevant infor-
mation and guide further action. For example, if we hear our name 
called in a crowded room and our goal is to turn towards the caller, 
regardless of their identity, information about the location of the 
sound will drive our actions; but if we wish to respond on the basis 
of the identity of the caller, the frequencies, in the very same sound, 
will be most important for driving our actions. As with other types 
of decision, when the evidence for or against different choices is 
noisy or uncertain, accumulation of many observations over time 
is an important strategy for reducing noise1,4,7,8. Here we explore the 
neural mechanisms that underlie our ability to flexibly accumulate 
evidence about external stimuli and to switch our response according 
to contextual information.

We developed a series of experimental and computational techniques 
to address this question. First, we developed a behavioural pulse-based 
task in rats to study context-dependent selection and accumulation of 
evidence for decision-making. Delivering evidence in highly random, 

yet precisely known pulses provided us with high statistical power to 
precisely characterize the rats’ behaviour and neural dynamics. Then, 
using an automated, high-throughput procedure, we trained many rats 
to solve the task, which enabled us to uncover a surprising degree of 
variability in the behaviour and neural dynamics across individuals, 
even when they were all well-trained, high performing animals. Next, 
we developed a mathematical framework that defined the space of 
solutions for networks that can implement the required computation. 
The theoretical framework predicted that variability in position in that 
solution space, within and across individuals, should be the underlying 
variable that would jointly drive variability in behaviour and neural 
responses—implying that behavioural and neural variability should 
be tightly correlated. Our experimental data robustly confirmed this 
theoretical prediction. Finally, we developed techniques to engineer 
artificial recurrent neural networks (RNNs) across the full range of our 
theoretical solution space and showed that gradient-descent methods, 
as typically used to train network models, lead to only one corner of 
the possible data-compatible solutions.
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Flexible evidence accumulation in rats
To study the neural basis of context-dependent selection and accumu-
lation of sensory evidence, we trained rats on a novel auditory task in 
which, in alternating blocks of trials, subjects were cued to determine 
either the prevalent location (LOC) or the prevalent frequency (FRQ) 
of a sequence of randomly timed auditory pulses (Fig. 1a). The rela-
tive rates of left versus right and high- versus low-frequency pulses 
corresponded to the strength of the evidence about LOC and FRQ, 
respectively (Fig. 1b). These relative rates were chosen randomly and 
independently on each trial, and were used to generate a train of pulses 
that were maximally randomly timed—that is, having a Poisson distribu-
tion. Correct performance requires selecting the relevant feature for 
a given context, accumulating the pulses of evidence for that feature 
over time, and ignoring the irrelevant feature. Many rats were trained 
to good performance on this task using an automated training proce-
dure (Fig. 1c; training code available at https://github.com/Brody-Lab/
flexible_decision_making_training) and most rats learned the task in a 
timespan between two and five months (Extended Data Fig. 2g). After 
training, rats associated the audiovisual cue presented at the begin-
ning of each trial with the correct task context, and were able to switch 
between selected stimulus features within four trials of a new context 

block (Extended Data Fig. 1e). Our task structure was inspired by a previ-
ous visual task used with macaques4—major distinctions between the 
previous and current tasks included the species difference, the sensory 
modality difference, and the pulse-based nature of our task; this last 
will be key for the analyses performed below. Despite the important 
differences across tasks, attained performances were similar across 
the two species (Extended Data Fig. 1c,f). We reasoned that the highly 
random yet precisely known stimulus pulses, together with large num-
bers of trials and subjects, would provide us with statistical power to 
characterize both behavioural9 and neural responses.

To compare neural dynamics in a decision-making region across 
monkeys and rats, we examined neural activity in the frontal orienting 
fields (FOF) while rats performed our task. The FOF are a rat cortical 
region that is thought to be involved in decision-making for orient-
ing choice responses10,11, and have been suggested as homologous 
or analogous to macaque frontal eye fields (FEF)10,12,13, which are the 
cortical region recorded in the previous monkey task4. Consistent with 
a key role for the FOF in our task, bilateral optogenetic silencing of rat 
FOF demonstrated that they are required for accurate performance of 
the task (Extended Data Fig. 4; n = 3 rats). We implanted tetrodes into 
the FOF and into another frontal region, the medial prefrontal cortex 
(mPFC), and we recorded from n = 3,495 putative single neurons during 
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Fig. 1 | Rats can perform context-dependent evidence accumulation. a, The 
task. Each trial starts with a sound indicating context (LOC or FRQ), followed by 
a 1.3-s train of randomly timed auditory pulses. Each pulse is played either from 
a left or right speaker, and has either low or high frequency (freq.). In LOC trials, 
subjects must turn, at the end of the stimulus, towards the side that played the 
higher total number of pulses, ignoring frequency. In FRQ trials, subjects must 
turn right if there was a higher number of high-frequency pulses (Hi) and left if 
there was a higher number of low-frequency pulses (Lo). An identical stimulus 
can be associated with opposite responses in the two contexts. L, left; R, right. 
b, The stimulus set. c, Logistic fits of psychometric curves for 20 rats after 
training (more than 120,000 trials for each rat). In the LOC context, choices are 
mostly affected by location; in the FRQ context, choices are mostly affected  
by frequency. d, Population activity evolving over time corresponds to a 

trajectory in a high-dimensional neural space. This trajectory is projected onto 
axes that optimally encode momentary LOC and FRQ evidence and choice.  
e, Trajectory of choice-modulated neural activity, projected onto its first two 
principal components (PC1 and PC2). The trajectory was computed separately 
for each context, but the principal components were computed in common 
across contexts. The choice axis was defined as the straight-line fit to the trace 
from t = 0 to t = 1.3 s. f, Population trajectories from recordings in FOF of rats 
performing the task. Trajectories are projected onto choice and LOC axes (top 
row) or choice and FRQ axes (bottom row). Trajectories are sorted by strength 
of location (top row) or frequency (bottom row). Stim, stimulus. g, Same 
analysis as in f, for recordings from FEF of macaque monkeys performing an 
analogous visual version of the task, with motion and colour contexts4.

https://github.com/Brody-Lab/flexible_decision_making_training
https://github.com/Brody-Lab/flexible_decision_making_training
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n = 199 sessions from n = 7 rats while they performed the task shown 
in Fig. 1. As with previous reports in frontal cortices of macaques and 
rodents, we found that task-related firing rates were highly heterogene-
ous across neurons. We then carried out the same analysis that had been 
applied to the (also heterogeneous) neurons recorded from monkey 
FEF4,14, and found strong qualitative similarities across the two species 
(compare Fig. 1f,g). The analysis, known as targeted dimensionality 
reduction (TDR) begins by describing neural population activity at 
a given moment in time as a point in ‘neural space’, where each axis 
represents the firing rate of one of the N recorded neurons. As activity 
evolves over the duration of a trial, a trajectory in N-dimensional neural 
space is traced out (Fig. 1d). Following ref. 4, neurons recorded sepa-
rately in different sessions were combined into a single time-evolving 
N-dimensional neural vector. This ‘pseudo-population’ activity was 
averaged across trials with a given generative pulse rate (that is, within 
each of the 36 blocks in Fig. 1b), for each of the two contexts, and for 
each of the subject’s choices. These trajectories were projected onto 
the orthogonalized linear subspaces that best predicted the subject’s 
choice, momentary location evidence or momentary frequency evi-
dence (illustrated as different axes in Fig. 1d). We found that trajectories 
for different evidence strengths were clearly separated along the axis 
of each sensory feature (see separation of traces along the vertical 
axes of the panels of Fig. 1f; only correct trials are shown). This was true 
regardless of whether the feature was relevant or irrelevant (compare 
vertical separation for left versus right columns in Fig. 1f). A similar 
observation in the monkey data (Fig. 1g) previously led to the conclu-
sion that irrelevant feature information was not gated out from reach-
ing frontal cortex4; the same conclusion applies to our rat data. Next,  
we present a theoretical analysis that applies equally to this scenario 
(no gating of irrelevant information before reaching frontal cortex), as 
well as to alternative mechanisms that rely on early gating, an aspect 
we return to in the discussion. Overall, the marked qualitative similar-
ity between the rat (Fig. 1f) and monkey (Fig. 1g) traces suggests that 
the underlying neural mechanisms in the two species may be similar 
enough that an active exchange of ideas between studies in the two 
species will be very fruitful.

Using model-based TDR analysis14, we found the two-dimensional 
subspace that best accounts for the contribution of the animal’s choice 
to the neural activity (accounting for 81.3% of the variance). We then 
projected the kernel-based estimates of ‘go-right’ and ‘go-left’ tra-
jectories (which are noise-reduced versions of the raw trajectories) 
(Extended Data Fig. 5h) onto it (Fig. 1e). During the stimulus presen-
tation (t = 0 to t = 1.3 s, a period during which subjects must accumu-
late sensory evidence), this choice-related information in firing rates 
evolved along an essentially one-dimensional straight line in neural 
space (accounting for 73.3% of the variance), only later curving into a 
second dimension (see Extended Data Fig. 5 for per-animal analysis). 
This is consistent with previous findings, with the initial linear phase 
having been suggested as corresponding to gradual evidence accumu-
lation, whereas the subsequent rotation may correspond to formation 
of a motor plan15,16, perhaps after commitment to a decision14,17. We 
will focus on evidence accumulation during this linear phase, while 
the decision is being formed, and will refer to the corresponding line 
in neural space as the ‘choice axis’: the animal’s upcoming choice can 
be predicted from position on this axis. Crucially, both correct and 
incorrect trials are used for this analysis, allowing to separate this 
choice-predictive signal from responses to sensory stimuli. In a final 
similarity with the monkey data, we found that the choice axes, esti-
mated separately for each of the two contexts, were essentially parallel 
(average angle between contexts = 1.6°; not significantly different from 
0 (P > 0.1) for 6 out of 7 rats; Methods). Consequently, in the theoretical 
development below we will assume that the direction of the choice axis 
is the same in the two contexts. However, this simplifying assumption 
can be relaxed, as addressed in the discussion and detailed in Extended 
Data Fig. 10.

Three components underlie task solutions
It has long been hypothesized that neural dynamics around the choice 
axis are well approximated by a line attractor18,19—that is, that the choice 
axis is formed by a closely packed sequence of stable points. This follows 
from the idea that the position of the system on the choice axis corre-
sponds to net accumulated evidence towards right versus left choice; 
in temporal gaps between pulses of evidence, an accumulator must be 
able to stably maintain accumulated values, and thus position anywhere 
along this axis should be a stable point. We now develop theoretical 
implications of this computation-through-dynamics18 line attractor 
hypothesis, which lead to a new description of the space of possible 
network solutions consistent with the hypothesis, and to new experi-
mental predictions that we find to be robustly supported by the data.

A key implication of the line attractor hypothesis, which follows 
from linearized approximations of the dynamics of the system, is that 
a sensory stimulus pulse that perturbs the system along direction i 
has a net effect on position along the choice axis4,19 given by the dot 
product of that input vector i and the ‘selection vector’ s. That is, the 
change in choice axis position is equal to s ⋅ i (Box 1). Thus, in the linear 
dynamics approximation, and under the line attractor hypothesis, the 
simple dot product s ⋅ i summarizes the result of the interaction of 
local recurrent dynamics (represented by s) with a pulse of external 
input (represented by i).

It follows that for a pulse of evidence to have a greater effect on choice 
in the context in which it is relevant than when it is irrelevant, s ⋅ i must 
be greater in the relevant context than in the irrelevant context. The 
recurrent dynamics in the decision-making region could be different 

Box 1

Dynamics around line attractors
Linearized dynamics around a fixed point in neural space can be 
represented by = ⋅t

d
d M rr , where M is a matrix and r is a vector that 

represents the system’s position in neural space relative to the 
fixed point.

The eigencoordinates e, defined by e ≡ V−1 ⋅ r, where the columns 
of V are the eigenvectors of M, can also be used to describe these 
dynamics. The advantage of eigencoordinates is that each element 
j of the vector e evolves over time independently of the others, 
following e t e t λ t( ) ( 0) exp( )j j j= = , where λj is the eigenvalue 
corresponding to the jth eigenvector.

For a line attractor, one eigenvalue (by convention the  
one with index j = 0) has value 0 (λ0 = 0) and consequently 

= = =e t e t( ) constant ( 0)0 0 . All other eigenvalues have a negative 
real part, implying that their corresponding eigencoordinates 
decay to zero over time, as the system state relaxes back onto the 
line attractor. Thus, if an external input pulse i perturbs the system 
off the line attractor onto position r(t = 0) = i, it follows that, after the 
transients in which eigencoordinates j > 0 decay to zero, the new 
position on the line attractor, relative to the starting fixed point,  
will be given by e0(t) = e0(t = 0), since this will be the only non-zero 
eigencoordinate.

The zeroth eigencoordinate of the initial position, e0(t = 0), will 
be the dot product of the the top row of V, which we label as the 
selection vector s and the input vector i (refs. 4,19):

= = ⋅ =

= ⋅

−

−

t t( 0) ( 0)1

1

e V r
V i

which implies that net motion along the line attractor caused by an 
input pulse i is equal to s ⋅ i.
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in the two contexts; similarly, context-dependent modulation of early 
sensory responses20–24 could lead the direction i along which a pulse of 
a given feature perturbs the system to be different in the two contexts. 
Thus, indicating relevant versus irrelevant context with a subscript 
(sREL versus sIRR and iREL versus iIRR for relevant versus irrelevant, respec-
tively), the general condition for a given feature’s input pulse to have 
greater effect on choice when relevant versus irrelevant is:

∆( ⋅ ) = ⋅ − ⋅ > 0s i s i s iREL REL IRR IRR

where Δ indicates difference across contexts. For each of the features 
being considered (in our experiments, LOC and FRQ), this difference 
Δ(s ⋅ i) can be rewritten as the sum of three components (Fig. 2c).
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where the overbar symbol represents the average over the two con-
texts, Δ represents difference between the two contexts, and Δi⊥ and 
Δi∥ represent the component of Δi that is orthogonal and parallel to 
the choice axis, respectively. For any given feature (here, either LOC 
or FRQ), and for any given network that solves the task (and thus has 
Δ(s ⋅ i) > 0), the percentage that each of the components contributes to 
the total Δ(s ⋅ i) can be visualized in terms of distances from the vertices 
of a triangle—that is, a point in barycentric coordinates (Fig. 2g). We 
emphasize that all positions on the triangle have Δ(s ⋅ i) > 0 and thus all 
describe solutions; the different positions describe variations across 
networks that embody different solutions for the task. This will be a key 
aspect to understanding variability across different individuals that all 
solve the task. Indirect input modulation (IIM), the first component 
in equation (2), is what follows if the difference across contexts is a 
change in the input vector i, with the change orthogonal to the line 
attractor. The direct input modulation (DIM), the second component, 
follows from change in the input i that is parallel to the line attractor. 
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Fig. 2 | Context-dependent evidence selection can be dissected into three 
components. a, The stimulus provides a train of go-left (down arrow) versus 
go-right (up arrow) pulses of LOC evidence (top) and FRQ evidence (bottom). 
Pulses of relevant evidence must move the system’s position along the choice 
axis, whereas irrelevant evidence should have negligible effect. b, The final 
effect of a single pulse of evidence is equal to the dot product of the selection 
vector sREL and the input vector iREL. In the irrelevant context, the pulse effect 
equals sIRR ⋅ iIRR. c, To solve the task, relevant evidence must have a larger effect 
than irrelevant evidence. This can be rewritten as the sum of three components, 
spanning the space of possible solutions. Δ indicates difference across 
contexts; bar indicates mean across contexts. d, The IIM is a change in input 
across contexts, orthogonal to the choice axis. Bottom left, the projection onto 
the choice axis is initially identical across contexts, differing only after the 

relaxation dynamics. Bottom right, the differential pulse response (the 
difference across contexts in the projection onto the choice axis of the response 
to a pulse) increases gradually from zero. e, The SVM describes changes across 
contexts in the recurrent dynamics. As in d, the differential pulse response is 
initially zero and increases only after the relaxation dynamics. f, The DIM is a 
change in the input vector parallel to the choice axis. In contrast to d,e, the 
differential pulse response is non-zero immediately upon pulse presentation. 
g, Top, all recurrent networks that solve the task can be expressed as a weighted 
sum of three components and can therefore be mapped inside a triangle with 
barycentric coordinates. Bottom, the vertical axis quantifies how quickly the 
differential pulse response diverges from zero. A second axis (oblique line) 
captures how much the network relies on context-dependent modulation of 
inputs versus context-dependent modulation of recurrent dynamics.
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Selection vector modulation (SVM), the third component, follows 
from a change in the selection vector s that represents the recurrent 
dynamics in the decision-making region itself. The manner in which 
each of the components of equation (2) lead to a greater change in 
line attractor position for the relevant context than for the irrelevant 
context is illustrated in Fig. 2d–f.

Different positions on the triangle of Fig. 2g are not merely distinct 
mathematically; they have different, and important, biological implica-
tions. First, where a network solution lies along the ‘change in inputs’ 
versus ‘change in dynamics’ tilted axis in Fig. 2g has important anatomi-
cal implications. For networks at the ‘change in dynamics’ corner, the 
anatomical locus of context-dependence must be in decision-making 
regions, as it is the recurrent dynamics of these regions that differ across 
contexts. By contrast, for networks at the ‘change in inputs’ end of the 
axis, the anatomical locus of context-dependence could be outside 
decision-making regions—for example, it could lie in modulation of 
responses in sensory regions20–24 or in modulation of the pathways from 
sensory to decision-making regions25. Second, where a network solution 
lies along the vertical ‘fast’ versus ‘slow’ axis in Fig. 2g has both neural 
and behavioural implications. We describe the neural implications first. 
Networks at the slow end of the axis have 0% DIM—that is, they are all 
mixtures of IIM and SVM. For both IIM and SVM, the projection of the 
position of the system onto the choice axis immediately after a pulse 
of evidence is the same for the two contexts, and the difference across 
contexts develops only gradually (Fig. 2d,e, ‘differential response’). By 
contrast, networks at the fast end of the axis are 100% DIM, and for these 
a difference across contexts in the projection onto the choice axis is 
immediate (Fig. 2f). It is in this sense that neural context-dependence 
effects on the choice axis are fast at the DIM end of the axis, and slow 
at the base of the axis (s.v.m or i.i.m). If behavioural choices are driven 
by the position of the system on the choice axis, it follows that solution 
diversity on this axis will produce consequent behavioural diversity; 
we examine this idea further in Fig. 5.

Two parenthetical remarks follow from the algebraic rewriting in 
equation (2). First, early gating out of irrelevant information (iIRR = 0) is 
a special case within this framework, and can be either DIM (example 1 
in Supplementary Discussion) or IIM (example 2 in Supplementary Dis-
cussion). Second, the direction of the line attractor enters the rewriting 
only in the step from equation (1) to equation (2), when distinguishing 
IIM versus DIM. This is because this step describes Δi as the sum of a 
component orthogonal and a component parallel to a particular refer-
ence direction that is fixed across the two contexts; here, this reference 
is the direction of the line attractor. We focus here on the case where 
the line attractor direction is the same in the two contexts for simplic-
ity and because it is what we found in our rat data (Fig. 1) and what was 
found in the monkey data4. However, equation (2) can be extended to 
the case of line attractors that are not parallel across the two contexts15 
(Discussion and Extended Data Fig. 10).

Pulse analyses distinguish solutions
Artificial model networks can be used to illustrate approaches to solv-
ing the task. To find networks with many individual heterogeneous 
units, as observed in the experimental data (see for example, Extended 
Data Fig. 4), Mante et al.4 trained RNNs to perform the task. Using the 
analyses of Fig. 1d–g, they observed important similarities between the 
neural trajectories in the experimental data and in the trained RNNs. 
Upon analysing the linearized dynamics of the RNNs, they found that 
the trained RNNs solved the task using SVM. This prompted their influ-
ential suggestion of SVM as the leading candidate for how the brain 
implements context-dependent decision-making. What was unap-
preciated at the time was that the linearization that they used (‘activa-
tion space’ linearization; see Supplementary Information, ‘Linearizing 
RNN dynamics in firing rate space versus activation space’) precluded 
observing input vector modulation (whether direct or indirect) for the 

type of inputs used in their networks26. We therefore repeated their 
analysis, but using a linearization (‘firing rate space’ linearization) 
that does permit observing input vector modulation in these RNNs27. 
Starting from randomly chosen initial network weights, we trained 
many RNNs to solve the task, analysed their linearized dynamics, and 
using equation (2), plotted the position of each RNN in barycentric 
coordinates. The results with the new linearization at first sight con-
firmed the essence of the conclusion of Mante et al.4, namely, that the 
trained RNN solutions are densest near the SVM corner at bottom left 
(Fig. 3a). However, the insight in equation (2), together with our choice 
of linearization in firing rate space, also allowed us to engineer RNNs 
that solve the task and lie at any chosen point within the barycentric 
coordinates (Methods)—that is, we are no longer constrained to exclu-
sively examine the set of RNN solutions that are produced through 
training. Surprisingly, we found that SVM is not required to produce 
trajectories such as those in Fig. 1f,g. Instead, network solutions at any 
point within the barycentric coordinates, not only those close to the 
SVM corner, produce traces that are qualitatively similar to the experi-
mental data (see Fig. 3d and Extended Data Fig. 6). This suggests that 
analyses such as the one in Fig. 1f,g, which averages trials within each 
stimulus block in Fig. 1b, cannot readily distinguish between different 
solutions across the barycentric coordinates of Fig. 2g—a space that, as 
described above, spans all possible solutions that are consistent with 
the choice axis being parallel across the two contexts.

By contrast, the descriptions of the three components illustrated in 
Fig. 2d–f suggest that analysing the response of the system to pulses 
of evidence would better distinguish different solutions—an analysis 
that our pulse-based task is well suited to. A full characterization would 
require an estimate of each of the dynamics selection vectors sREL and 
sIRR, which unfortunately are not directly observable. Nevertheless, 
the direction of the choice axis is straightforwardly estimated (Fig. 1), 
making the projection of the system’s state onto the choice axis a readily 
assayed measure. Figure 2d–f, bottom right shows that the difference 
across contexts of the time evolution of this projection (the differential 
pulse response) can serve as an assay of the percentage of DIM in the 
solution because it can distinguish solutions along the fast versus slow 
axis of Fig. 2g. This is illustrated in Fig. 3 using engineered RNNs, for 
which we can analytically compute their position on the barycentric 
coordinates (Fig. 3b) and can also directly measure the differential pulse 
response (Fig. 3e and Methods). As a summary of the temporal shape 
of the differential pulse response, we use the slope of a straight-line fit 
to it (slope index; Methods); the smallest slope index corresponds to 
Fig. 3f, top, and the largest slope index corresponds to Fig. 3f, bottom. 
Figure 3g confirms that in the RNNs, this slope index can be used as a 
measure of a network solution’s position on the fast versus slow axis. 
On the basis of previous approaches28, we developed kernel-based 
regression methods to measure the differential pulse response from 
neural activity recorded experimentally, and validated these methods 
in the RNNs (compare Fig. 3e,f). We then applied them to experimen-
tal data from each of our seven rats and for each of the LOC and FRQ 
features (Fig. 3h). Of note, we did not find that a particular slope index 
consistently characterized solutions across rats. Instead, there was 
high variability across rats in this measure, and even across features 
within a single rat; no apparent correlation between the LOC and FRQ 
slope indices was visible (Fig. 3h, top right).

Linking neural and behaviour variability
A widespread hypothesis in the field is that behavioural choices are 
driven by the system’s position on the choice axis29–31. If this is cor-
rect, then fast versus slow context-dependent effects on the choice 
axis, as produced by large versus small DIM percentages (Fig. 3e,f), 
should have corresponding behavioural correlates. To assess the effect 
on behavioural choices of pulses at different times of a trial, we used 
logistic regression to compute behavioural kernels for LOC and FRQ 
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evidence in each of the two LOC and FRQ contexts; each these kernels is 
a measure, from behavioural data, of the relative weight that evidence 
presented across different time points of a trial has on the subject’s 
choices (Methods). For a given feature, either LOC or FRQ, we refer to 
the difference across contexts as the differential behavioural kernel 
(panels along vertical and horizontal axes of Fig. 4; Extended Data 
Fig. 3). The shape of an individual’s differential behavioural kernel for 
one feature did not appear to predict the shape of the kernel for the 
other feature (Fig. 4, top right), similar to our finding with the neural 
differential pulse responses (Fig. 3h). Nevertheless, the theory predicts 
that neural differential pulse responses and differential behavioural 
kernels should be tightly linked. Figure 5a,b illustrates the concept. 
We use the simplifying assumption that the neural differential pulse 
response (Fig. 3) does not depend on time within a trial or on previously 
presented evidence (data supporting this assumption are in Extended 
Data Fig. 7g). If T is the time at which position on the choice axis is read 
out to commit to a right versus left choice, then the context-dependent 
difference in the impact on behavioural choices of a pulse at time t will 
follow the neural differential pulse response at an interval T − t after 
the pulse. For DIM, with a differential pulse response that is immediate 
and sustained (Fig. 3e,f, top), the differential behavioural effect of a 
pulse should then be the same whether it is presented close to or long 
before the choice commitment time T, producing a flat differential 
behavioural kernel (that is, slope index = 0; Fig. 5a). However, for SVM 
or IIM with differential pulse responses that grow only gradually from 
zero (Fig. 3e,f bottom), the differential behavioural effect of a pulse will 
be small if presented shortly before choice commitment, and larger if 
presented longer before. This should result in a converging differential 
behavioural kernel (slope index > 0; Fig. 5b). In other words, the shape of 
the differential behavioural kernel should be the reflection on the time 

axis of the differential pulse response. These two very different types of 
measures—behavioural versus neural—are thus predicted to have the 
same slope index (but with opposite sign). We tested this prediction on 
RNNs engineered to solve the task using different amounts of DIM As 
predicted, the slope indices of the two different measures were tightly 
anti-correlated (Fig. 5c). We then tested whether a similar relationship 
existed for the rats’ behavioural and neural experimental data. To avoid 
any spurious correlations, we used different sets of pulses to assay each 
measure: we used pulses from the first half of the stimulus to measure 
the neural differential pulse response, and pulses from the second half 
of the stimulus to measure the differential behavioural kernel. We found 
robust support in the data for the theoretical prediction that the two 
measures should be correlated (Fig. 5d, r = −0.73, P < 0.01), with the 
correlation also holding for LOC evidence alone (r = −0.71, P < 0.1) or 
for FRQ evidence alone (r = −0.71, P < 0.1). Thus, although there is no 
correlation within the neural measure (Fig. 3h) or within the behav-
ioural measure (Fig. 4), and although the two measures were assayed 
on entirely different sets of pulses, the theoretical prediction that they 
should be strongly correlated was confirmed (Fig. 5d). These results 
support both the overall theoretical framework, which was built around 
the line attractor hypothesis for the choice axis from which behaviour 
is read out, and the idea that variability in a solution’s position in the 
barycentric coordinates of Fig. 2g is the common source underlying 
and explaining the neural and behavioural variability in Figs. 3h and 4.

Discussion
An influential conceptual approach known as ‘computation through 
dynamics’18,19,32 has posited that an understanding of neural activ-
ity from a mathematical dynamical systems perspective will enable 
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Fig. 3 | Backpropagation-trained RNNs explore a subset of possible 
solutions, whereas engineered RNNs span the full solution space, matching 
heterogeneity in experimental data. a, Distribution of 1,000 RNNs trained 
using backpropagation through time: networks favoured SVM, as found in Mante 
et al.4. b, RNNs can be engineered to lie anywhere in the space of solutions 
(Extended Data Fig. 6), including, as shown here, the vertical axis, from 0%  
to 100% DIM. c–f, Each row analyses a single trained RNN, with different rows 
having different DIM percentages, as indicated in b. c, Networks across the 0 to 
100% DIM axis perform the task with psychometric curves qualitatively similar 
to experimental data (Fig. 1c). d, All of the networks have neural activity that 
produces TDR traces that are qualitatively similar to the experimental data 
(compare with Fig. 1f,g). e, In contrast to c,d, differential pulse responses  

(as in Fig. 2d–f) distinguish the different RNNs. f, Estimation of the differential 
pulse responses using kernel regression methods applicable to experimental 
data (Methods) match the calculated differential pulse responses from d.  
g, The slope index (Methods) quantifies the slope of the traces. Applied to  
the estimated differential pulse responses in e, it has a monotonic relationship 
with DIM percentage, and therefore can be used as a proxy measure for DIM 
percentage. h, Differential pulse responses estimated from experimental data 
for each of the FRQ (bottom) and LOC (left) features, with the corresponding 
parallel indices plotted against each other (top right). Arrows point to the parallel 
index value of each of the examples shown. Error bars indicate bootstrapped 
standard errors. Data from n = 7 recorded rats.
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explanation of high-level phenomena such as cognition. Our work 
supports this view: starting from the longstanding hypothesis that 
decision evidence accumulation occurs along a line attractor (a concept 
drawn from dynamical systems; Supplementary Information), with the 
system’s position on this line attractor driving choice behaviour, and 
adding an algebraic rewriting of how the linearized dynamics around 
such an attractor would differ across two contexts, we developed a 
theory that describes and accounts for the variability in the properties 
of different solutions used by equally well-performing individuals. The 
theory predicted a tight link between otherwise disparate neural and 
behavioural measurements. This prediction was then found to be well 
supported in the data across multiple animals.

The approach led to multiple insights: theoretical insights, defining 
the space of possible solutions (Fig. 2g); biological insights, describing 
the behavioural, neural and anatomical implications of the different 
solutions; conceptual insights, identifying the underlying source that 
links neural and behavioural variability (Fig. 5); and technical insights, 
enabling us to engineer RNNs that could not be constructed before, 
spanning the full space of solutions (Fig. 3a,b).

We describe our theoretical work as a ‘framework’ because it does 
not specify particular network implementations. Instead, it defines 
axes onto which all possible dynamical solutions can be projected 
and described, with the position of a solution on this space quan-
tifying how pulse-evoked dynamics change across contexts. The 
different components of the barycentric coordinates of Fig. 2g can 
also be viewed in terms of an associated latent circuit that clearly 
separates each component (Extended Data Fig. 9). Each point in the 
space constrains features of the circuits that map to it, but each point 
could nevertheless be implemented in multiple ways. Recent com-
putational work has described several different implementations 
of context-dependent decision-making in RNNs33–35 (but see ref. 36 
regarding ref. 35). Since the barycentric coordinates of Fig. 2g can 
be used to describe any network that solves the task with line attrac-
tors that are parallel across contexts (and see Extended Data Fig. 10 
otherwise), all of the networks in refs. 4,33–35 can be located on those 

coordinates. The rank 1 networks described in ref. 33 map onto points 
lying exclusively along the right edge of the triangle of barycentric 
coordinates in Fig. 2g (the input modulation edge). This is because 
networks with a non-zero SVM component require rank 2 or higher 
(Supplementary Information). The idealized latent network solution 
of ref. 34 (their fig. 3b) maps onto the bottom right corner of Fig. 2g 
(100% IIM). The recurrent network version of ref. 35 (their fig. S5H), 
which modulates the linearized inputs and the recurrent dynamics 
equally, maps onto a point at the centre of the left edge of the triangle. 
Finally, as described in Fig. 3, ref. 4 maps onto the bottom left corner 
(100% SVM). All three of refs. 4,34,35 each describe solutions that 
cover only a restricted region of the barycentric coordinates, and 
therefore do not address the variability we observed across individuals 
(see Supplementary Information for more on the relationship between 
refs. 33–35 and our work).

Our work also provides a cautionary note, highlighting the fact that 
trained RNNs, which are commonly used to model brain function4,37–42, 
need not comprise the full set of solutions consistent with the bio-
logical data. We found that training led towards only one corner of the 
full space of solutions (Fig. 3a). It was a deeper understanding of the 
mathematics behind solutions (equations (1) and (2)), not the use of 
trained networks, that enabled us to engineer data-compatible RNNs 
across the full space of solutions (Fig. 3b–f and Extended Data Fig. 6).

The interactions between afferent input signals and recurrent 
dynamics are a key part of understanding context-dependent com-
putations. This view is closely related to the alignment of inputs and 
dynamics recently reported for sensory learning43. For example, large 
context-dependent changes in the sensory input (that is, a large Δi in 
equation (1)) are not sufficient to conclude that those context-depend-
ent changes in inputs drive context-dependent decision-making: only 
those input changes that are aligned to s, the average direction in 
neural space representing the recurrent dynamics, will produce a 
context-dependent effect on decisions (through Δ si ⋅ ). For the same 
reason, we note that although our data (Fig. 1) and that of ref. 4 are 
not compatible with ‘early gating’ (that is, blocking irrelevant evidence 
from reaching decision-making regions), the data are nevertheless 
compatible with input modulation (Fig. 3 and Extended Data Fig. 6). 
Several further studies have also provided evidence against early 
gating5,6,44, but there are nevertheless multiple studies providing 
evidence in favour of early gating24,35,45,46, making the issue a matter 
of ongoing debate. It has been argued that early gating is indicated 
by a representation of evidence in decision-making regions that is 
weaker in the irrelevant context (that is, a smaller magnitude |i|, in 
our terminology)45, but example 3 in Supplementary Information 
illustrates a counter-example in which the context with smaller |i| is 
actually the one in which i has a larger effect on decisions, because it 
has the larger s ⋅ i; in other words, the interaction with recurrent 
dynamics needs to be taken into account before firm conclusions can 
be drawn. Similar to individual variability across the vertical axis of 
the solution space of Fig. 2g, which we believe is a result of all of the 
encompassed solutions being capable of solving the task, solutions 
with or without early gating are equally capable of solving the task 
(and both lie within the framework that we describe; see examples 1 
and 2 in Supplementary Information). It is thus possible that there 
could be variability across tasks and individuals, and perhaps even 
within them, in the use of early gating. Further work will be needed 
to resolve the relative prevalence or absence of early gating.

We have focused on the case in which the choice axes of the two con-
texts are parallel to each other. A recent study15 reported that in contrast 
to the findings of ref. 4 in monkey FEF and our findings in rat FOF, choice 
axes in monkey parietal cortex rotated across two task contexts. This 
motivated a broadening of our barycentric coordinates framework, and 
Extended Data Fig. 10 and the discussion in Supplementary Informa-
tion describe how it can be extended to choice axes that rotate across 
contexts. In that more complex case, there are four components that 
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Fig. 4 | Differential behavioural kernels show substantial heterogeneity 
across and within subjects, even when all subjects perform the task well. 
Behavioural kernels are a behaviour-based measure of how much weight the 
pulses from different time-points within a trial have on a subject’s decision 
(Methods and Supplementary Fig. 1). For a given feature, the differential 
behavioural kernel, shown here, is the difference in the behavioural kernel when 
that feature is in its relevant versus irrelevant context. Time axes run from the 
start of the auditory pulse trains (t = 0) to their end (t = 1.3 s). Figure conventions 
as in Fig. 3h, but the data here are behavioural, not neural. n = 18 rats.
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add up to the net context-dependent effect, rather than three, and the 
barycentric coordinates therefore exist in a tetrahedron instead of 
a triangle. However, the core concepts of the framework remain the 
same. The same study15 further contrasted with the approximately 
linear choice axis that we (Fig. 1e, t = 0 to t = 1.3 s) and others4,14,29,47,48 
have found, in that they reported a curved choice axis due to a direc-
tion in neural space that encoded the magnitude of a trial’s difficulty, 
regardless of the sign of the subject’s upcoming choice. We speculate 
that differences across the studies could perhaps be explained by indi-
vidual differences in the strength of difficulty encoding. In tasks or 
individuals where the difficulty encoding is stronger, the curvature 
would become a more important feature.

Even though our experiments were performed with rats, the similar-
ity in the results of behavioural (Extended Data Fig. 1c,f) and neural 
(Fig. 1e,f) analyses that could be carried out in common with monkeys 
suggests that conclusions reached from rat data may generalize to other 
species. Using humans, a recent context-dependent decision-making 
study49 found that different stimulus features were processed indepen-
dently. This finding is in line with our result that rat subjects can use 
separate mixtures of context-dependent components to select and 
accumulate each of the two features (Figs. 3h and 4).

Electrophysiological studies are frequently centred on findings that 
are similar across subjects, and it is common practice to report the 
result for an ‘average’ subject. However, our results reveal a surprising 
degree of heterogeneity across, and even within, individual subjects, 
underscoring the importance of characterizing the computations 
used by each individual50. This issue may be of particular importance 
for cognitive computations, which are largely internal and therefore 
potentially subject to substantial covert variability across subjects. 
Here, studying how computations vary across subjects was made pos-
sible by two key methodologies: (1) an efficient, automated procedure 
to train a sufficient number of rats9; and (2) characterization of the 
computations of each individual by leveraging the statistical power 
afforded by a randomly timed, pulse-based stimulus9.

A limitation of our analyses of the experimental data is that we are 
currently unable to discriminate between mechanisms that rely on 
context-dependent changes of recurrent dynamics (SVM) versus 
changes in the linearized sensory inputs (input vector modulation—
that is, the oblique axis in Fig. 2g, bottom). A full characterization of the 
relevant neural dynamics will require estimation of the selection vector 
s for each context. Simultaneous recordings from large neural popu-
lations, combined with the application of recently developed latent 
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index. a,b, Schematics of the theoretical reasoning. a, For a network using mostly 
DIM, there is immediate and sustained separation along the neural choice axis 
between relevant and irrelevant pulses. Thus the differential effect (across 
contexts) of a pulse on choice does not depend on whether the pulse is presented 
early (left) or late (middle) relative to choice commitment. The temporally flat 
differential pulse response of the neurons thus results in a temporally flat 
differential behavioural kernel (right). b, By contrast, for a network using SVM 
or IIM, pulses have a differential effect on choice only after relaxation dynamics. 
Pulses presented well before choice commitment have a substantially different 
effect on choice across contexts (left), whereas pulses presented immediately 
before choice commitment have no time to induce a differential impact (middle). 

Gradually diverging neural differential pulse responses thus result in gradually 
converging differential behavioural kernels (right panel). c, Data from n = 30 
engineered RNNs spanning the vertical axis of the barycentric coordinates 
(colours as Fig. 3b). Left, examples of neural differential pulse kernels (as in 
Fig. 3e–h), each from a single RNN. Bottom, examples of differential behavioural 
kernels (as in Fig. 4). RNN models follow the theoretical prediction, with anti- 
correlated slope indices for neural differential pulse kernels and differential 
behavioural kernels. d, Experimental data (conventions as in c). Data follow the 
theoretical prediction, with anti-correlated slope indices for behavioural and 
neural measures. Shapes of individual data points indicate LOC and FRQ features 
for each of the n = 7 rats. Error bars are centred around the mean and indicate 
bootstrapped standard errors.
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dynamics estimation methods such as LFADS (latent factor analysis via 
dynamical systems)51 or FINDR (flow-field inference from neural data 
using deep recurrent networks)52, may prove instrumental in future 
work in this direction. Another potential limitation stems from the 
possibility that recurrent dynamics might evolve more rapidly53 than 
the current time resolution in our measurements, leaving us unable to 
discriminate between contextual input modulation and fast recurrent 
modulation. However, our results indicate that our analyses quantified 
the speed of evidence selection as smoothly varying across subjects 
(Figs. 3h and 4 and Extended Data Fig. 8), suggesting that in most sub-
jects dynamics are slow enough to be captured with our method.

In sum, our work provides a general framework to describe and inves-
tigate artificial and biological networks for flexible decision-making, 
and enables cellular-resolution study of individual variability in the 
neural computations that underlie higher cognition.
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Methods

Subjects
All animal use procedures were approved by the Princeton Univer-
sity Institutional Animal Care and Use Committee (IACUC) and were 
carried out in accordance with NIH standards. All subjects were male 
Long-Evans rats between the ages of 6 and 24 months, that were kept 
on a reversed light–dark cycle. All training and testing procedures were 
performed during the dark cycle. Rats were placed on a restricted water 
schedule to motivate them to work for a water reward. A total of 26 rats 
were used for the experiments presented in this study. Of these, 7 rats 
were used for electrophysiology recordings, and 3 rats were implanted 
with optical fibres for optogenetic inactivation.

Behaviour
All rats included in this study were trained to perform a task requiring 
context-dependent selection and accumulation of sensory evidence 
(Fig. 1a). The task was performed in a behavioural box consisting of 
three straight walls and one curved wall with three nose ports. Each 
nose port was equipped with an LED to deliver visual stimuli, and with 
an infrared beam to detect the rat’s nose when entering the port. In 
addition, above the two side ports there were speakers to deliver sound 
stimuli, and water cannulas to deliver a water reward. At the beginning 
of each trial, rats were presented with an audiovisual cue indicating the 
context of the current trial, either LOC context or FRQ context. The 
context cues consisted of 1-s-long, clearly distinguishable frequency 
modulated sounds, and in addition the LOC context was signalled by 
turning on the LEDs of all three ports, whereas in the FRQ context only 
the centre LED was turned on. After the end of the context cue, the rats 
were required to place their nose into the centre port. While maintain-
ing fixation in the centre port, rats were presented with a 1.3-s-long train 
of randomly timed auditory pulses. Each pulse was played either from 
the speaker to the rat’s left or from the speaker to their right, and each 
pulse a 5-ms pure tone with either low frequency (6.5 kHz) or high fre-
quency (14 kHz). The pulse trains were generated by Poisson processes 
with different underlying rates. The strength of the location evidence 
was manipulated by varying the relative rate of right versus left pulses, 
and the strength of the frequency evidence was manipulated by varying 
the relative rate of high versus low pulses (Fig. 1b). The overall pulse 
rate was kept constant at 40 Hz. In the LOC context, rats were rewarded 
if they turned, at the end of the stimulus, towards the side that had 
played the greater total number of pulses, ignoring the frequency of 
the pulses. In blocks of frequency trials, rats were rewarded for orient-
ing left if the total number of low-frequency pulses was higher than the 
total number of high-frequency pulses, and orienting right otherwise, 
ignoring the location of the pulses. The context was kept constant in 
blocks of trials, and block switches occurred after a minimum of 30 
trials per block, and when a local estimate of performance reached a 
threshold of 80% correct. Behavioural sessions lasted 2–4 h, and rats 
performed on average 542 trials per session. On average, rats switched 
across 14.6 context blocks per session.

Electrophysiology
Tetrodes were constructed using nickel/chrome alloy wire, 12.7 μm 
(Sandvik Kanthal), and were gold-plated to 200 kΩ at 1 kHz. Tetrodes 
were mounted onto custom-made drives54 (Extended Data Fig. 4a,b), 
and the microdrives were implanted using previously described surgi-
cal stereotaxic implantation techniques11. Five rats were implanted with 
bilateral electrodes targeting FOF, centred at +2 mm anteroposterior 
(AP), ±1.3 mm mediolateral (ML) from bregma, while two rats were 
implanted with bilateral electrodes targeting the prelimbic area of 
mPFC, with coordinates +3.2 mm AP, ±0.75 mm ML from bregma. In 1 
rat with an implant in FOF, 16 tetrodes were connected to a 64-channel 
electronic interface board, and recordings were performed using a 
wired setup (Open-Ephys). In the other 6 rats, 32 tetrodes per rat were 

connected to a 128-channel electronic interface board and recordings 
were performed using wireless headstages (Spikegadgets; Extended 
Data Fig. 4d).

Optogenetics
Preparation of chemically sharpened optical fibres (0.37 NA, 400 μm 
core; Newport) and basic virus injection techniques were the same as 
previously described11. At the targeted coordinates (FOF, +2 mm AP, 
±1.3 mm ML from bregma), injections of 9.2 nl of adeno-associated 
virus (AAV) (AAV2/5-mDlx-ChR2-mCherry, three rats) were made every 
100 μm in depth for 1.5 mm. Four additional injection tracts were com-
pleted at coordinates 500 μm anterior, 500 μm posterior, 500 μm 
medial and 500 μm lateral from the central tract. In total, 1.5 μl of virus 
was injected over approximately 30 min. Chemically sharpened fibres 
were lowered down the central injection track. Virus expression was 
allowed to develop for eight weeks before optogenetic stimulation 
began. Optogenetic stimulation was delivered at 25 mW using a cus-
tomized wireless system derived from the Cerebro system55,56 (https://
karpova-lab.github.io/cerebro; Extended Data Fig. 4c,e).

Analysis of behaviour
All code for data collection was written in Matlab 2019b. Data was 
extracted from all behavioural sessions in which rats’ fraction of cor-
rect responses was equal or above 70%, feature selection index (see 
below) was equal or above 0.7, and in which rats performed at least 
100 trials. Analysis of behaviour was performed for all rats with elec-
trophysiology or optogenetics implants, as well as for all other rats 
that performed at least 120,000 valid trials—that is, where the rat 
maintained fixation for the full duration of the pulse train before mak-
ing a decision. Psychometric curves (Fig. 1c and Extended Data Fig. 3) 
were used to display the fraction of rightward choices as a function 
of the difference between the total number of right pulses and left 
pulses (location evidence strength), and as a function of the difference 
between the total number of high pulses and low pulses (frequency 
evidence strength). These curves were fit to a four-parameter logistic 
function9:
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To quantify whether a rat selected the contextually relevant evi-
dence to form its decisions on a given session, we computed a feature 
selection index. For this purpose, we performed a logistic regres-
sion for each of the two contexts, where the rat’s choices were fit as 
a function of the strength of location and frequency evidence. For 
each context, we considered all valid trials, and we compiled the rat’s 
choices, as well as the strength of location and frequency evidence. 
The vector of choices was parameterized as a binary vector (right = 1; 
left = 0), the strength of location evidence was computed as the dif-
ference between the rate of right and the rate of left pulses, while 
the strength of frequency evidence was computed as the difference 
between the rate of high-frequency and low-frequency pulses. In the 
LOC context, we fit the probability of choosing right on trial k using 
the logistic regression:
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where s kLOC EVD,
LOC CTX  indicates the strength of location evidence on trial k, 

s kFRQ EVD,
LOC CTX  indicates the strength of frequency evidence on trial k, 

wLOC EVD
LOC CTX is the weight of location evidence on the rat’s choices, wFRQ EVD

LOC CTX 
is the weight of frequency evidence on the rat’s choices, and βLOC CTX is 
a bias term. The relative weight of location evidence in the LOC context 
was computed as
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Similarly, in the FRQ context we fit the rat’s choices as
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FRQ CTX is the weight of location evidence on the rat’s choices, wFRQ EVD

FRQ CTX 
is the weight of frequency evidence on the rat’s choices, and βFRQ CTX is 
a bias term. The relative weight of frequency evidence in the FRQ con-
text was computed as
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Finally, the feature selection index was then computed as the average 
between the relative weight of location in the LOC context (equation (5)) 
and the relative weight of frequency in the FRQ context (equation (7)):
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The feature selection index was used to precisely quantify the rats’ 
learning during training, as this metric enables comparison of data 
across stages with different evidence strength (Extended Data Fig. 2g). 
In addition, the relative weight of location and frequency were com-
puted for each rat as a function of the position of a trial within the 
block (for example, immediately after a block switch, one trial after 
a block switch, and so on), providing a measure of the rats’ ability to 
rapidly switch attended feature upon context switching (Extended 
Data Fig. 1g).

Behavioural logistic regression. To quantify the dynamics of evi-
dence accumulation, behavioural data was analysed using another 
logistic regression. Importantly, in equations (5) and (7) we quanti-
fied the rat’s weighting of evidence using a single number, because 
we considered the generative rates—that is, the expected strength of 
location and frequency evidence on a given trial. Now, we seek instead 
to quantify how these weights vary throughout stimulus presentation, 
by taking advantage of the knowledge of the exact pulse timing. For 
each rat, data across all sessions was compiled into a single vector 
of choices (right versus left), and two matrices detailing the pulse 
information presented on every trial. More specifically, the choice 
vector was parameterized as a binary vector (right = 1; left = 0), with 
dimensionality N, where N is the total number of valid trials. Pulse  
information was split into location evidence and frequency evidence, 
and was binned into 26 bins with 50-ms width. For a given bin, the 
amount of location evidence was computed as the natural logarithm 
of the ratio between the number of right and the number of left pulses, 
and was compiled in a location pulse matrix XL with dimensionality 
N × 26. Similarly, frequency evidence was computed as the logarithm of 
the ratio between high-frequency and low-frequency pulses, and was 
compiled into a frequency pulse matrix XF with dimensionality N × 26. 
We chose to use the logarithm of the ratio instead of the difference 
because it provided a better fit to cross-validated data. To quantify 
the impact on choices of evidence presented at different time points 
we fit a logistic regression, where the probability of choosing right at 
trial k was given by

∑P X w X w βlogit( (right) ) = ⋅ + ⋅ + (9)k
t

k t t k t t
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where Xk t,
L  indicates the location evidence at time t on trial k, Xk t,

F  indi-
cates the frequency evidence at time t on trial k, wt

L indicates the loca-
tion weight at time t, wt

F indicates the frequency weight at time t, and 
β indicates the bias to one particular side. Weights were fit using ridge 
regression, and the ridge regularizer was chosen to optimally predict 
cross-validated choices. The regression was applied separately for 
trials in the LOC context, and trials in the FRQ context, resulting in four 
sets of weights computed for each rat (Supplementary Fig. 1.2). To 
study how evidence was differentially integrated across the two con-
texts, we then computed a differential behavioural kernel. The location 
differential kernel was equal to the difference between the location 
weights computed in the LOC context, and the location weights com-
puted in the FRQ context. Similarly, the frequency differential kernel 
was equal to the difference between the frequency weights computed 
across the two contexts.

To quantify the shape of the differential behavioural kernels, we 
computed a behavioural slope index. To obtain this, we computed the 
straight line that provided the least-square fit of the difference between 
the weights across the two contexts. The slope index was defined as 
the slope of this fitting line.

As a result, a slope index = 0 indicates that the fitting line is perfectly 
horizontal (that is, the difference between the two sets of weights is 
constant at all time points), while a slope index <0 indicates a decreas-
ing difference between the weights across contexts, and a slope index 
>0 indicates a rising difference. Empirically we found that differential 
behavioural kernels predominantly displayed convergence towards the 
end of the pulse stimulus presentation (Fig. 4 and Extended Data Fig. 8).

Analysis of neural data
Spike sorting was performed using MountainSort57, followed by manual 
curation of the results. In total, 3,495 putative single units were recorded 
from 5 rats in FOF (number of units in each rat: 2,047, 832, 258, 94, 54), 
while 210 units were recorded from 2 rats in mPFC (number of units 
in each rat: 112, 98). To measure the responses of individual neurons, 
peri-stimulus time histograms were computed by binning spikes in 
20-ms intervals, and averaging responses for trials according to choice 
and context. Responses of single neurons in both areas were highly het-
erogeneous and multiplexed multiple types of information (Extended 
Data Fig. 4), and no systematic difference was found in the encoding of 
task variables across the two regions (see for example, Extended Data 
Fig. 5), so all studies of neural activity were carried out at the level of 
neural populations, and pooling data from FOF and from mPFC.

Trial-based TDR analysis of neural population dynamics. To study 
trial-averaged population dynamics, we applied model-based TDR 
(mTDR)14, a dimensionality-reduction method that seeks to identify 
the dimensions of population activity that carry information about 
different task variables. This method was applied to our rat dataset, and 
to reanalyse a dataset collected while macaque monkeys performed a 
similar visual task4 (Extended Data Fig. 1). In brief, the goal of mTDR is 
to identify the parameters of a model where the activity of each neuron 
is described as a linear combination of different task variables (choice, 
time, context and stimulus strength). For each of these task variables, 
the model retrieves a time-varying weight vector wi(t) (with number 
of elements, indexed by i, equal to the number of recorded neurons) 
specifying the linear relationship between the value of that variable 
and the activity of each neuron at each time point (each variable v con-
tributes an additive component v ⋅ wi(t) to the firing rate of neuron i),  
and the collection of these weight vectors across all neurons are con-
strained to form a low-rank matrix. Singular value decomposition 
of this low-rank weight matrix is then used to identify basis vectors 
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that maximally encode each of the task variables. Using this method, 
we identified one axis maximally encoding information about the  
upcoming choice of the animal (choice axis), one axis maximally encod-
ing information about the momentary strength of the first stimulus 
feature (location for rat data, motion for monkey data), and one axis 
maximally encoding information about the momentary strength of 
the second stimulus feature (frequency for rat data, colour for monkey 
data). To study how neural dynamics evolved in this reduced space, 
we first averaged the activity of each neuron across all correct trials 
according to the strength of location evidence, strength of frequency 
evidence (that is, within each of the 36 blocks; Fig. 1b), and context, 
and choice. For this analysis, spike counts were computed in 50-ms 
non-overlapping bins with centres starting at the beginning of the pulse 
train presentation and ending 50 ms after the end of the pulse train 
presentation. For any given trial condition, a pseudo-population (that 
is, including non-simultaneously recorded neurons) was computed 
for each time point by compiling the responses of all neurons into a 
single vector. The trajectory of this vector over time was then projected 
on the retrieved task-relevant axes to evaluate population dynamics  
(Fig. 1d–g).

Pulse-based TDR analysis of neural population dynamics. To esti-
mate the impact of evidence pulses and other task variables on neural 
responses, we fit the activity of each recorded unit using a pulse-based 
linear regression (Supplementary Fig. 1.1). For each neuron, spike 
counts were computed in 20-ms non-overlapping bins with centres 
starting 1 s before the beginning of the pulse train presentation, and 
ending 700 ms after the end of the stimulus presentation. The activity 
of neuron i at time t on trial k was described as

∗ ∗

∗ ∗

∗ ∗
(10)

r k β k β k β

β k β k

β k β k

( ) = choice( ) + context( ) + +

+ pulses ( ) + pulses ( )

+ pulses ( ) + pulses ( )

i t i t i t i t

i i

i i

, choice; , context; , time; ,

LOC,LOC; LOC,LOC LOC,FRQ; LOC,FRQ

FRQ,LOC; FRQ,LOC FRQ,FRQ; FRQ,FRQ

where xchoice(k) indicates the rat’s choice on trial k (right = 1, left = 0), 
xcontext(k) indicates the context on trial k (location = 1, frequency = 0), 
pulsesLOC,LOC(k) indicates the signed location evidence (number of right 
pulses minus number of left pulses) presented at each time bin on trial 
k in the LOC context, pulsesLOC,FRQ(k) indicates location evidence in the 
FRQ context, pulsesFRQ,LOC(k) indicates frequency evidence (number 
of high pulses minus number of low pulses) in the LOC context, and 
pulsesFRQ,FRQ(k) indicates frequency evidence in the FRQ context. The 
first three regression coefficients βchoice;i, βcontext;i and βtime;i account 
for modulations of neuron i across time according to choice, con-
text and time. The other four sets of regression coefficients βLOC,LOC;i,  
βLOC,FRQ;i, βFRQ,LOC;i and βFRQ,FRQ;i indicate the effect of a pulse on the sub-
sequent neural activity, and * indicates a convolution of each kernel 
with the pulse train; for example, in the case of location evidence in 
the LOC context:

∗ ∑ (11)β k β k t τpulses ( ) = ⋅ pulses ( ; − )i iLOC,LOC; LOC,LOC LOC,LOC; LOC,LOC

meaning that the element at position τ of kernel βLOC,LOC;i represents 
the impact of a pulse of location evidence in the LOC context on the 
activity of unit i after a time. The three kernels for choice, context 
and time describe modulations from 1 s before stimulus start to 
0.7 s after stimulus end in 20-ms non-overlapping bins, resulting in 
151-dimensional vectors. The 4 pulse kernels describe modulations 
from the time of pulse presentation to 0.65 s after pulse presentation 
resulting in 33-dimensional vectors. To avoid overfitting, this regression 
was regularized using a ridge regularizer, as well as an L2 smoothing 
prior58. Pulse kernels were regarded as an approximation of the neural 
response to each pulse type (an assumption confirmed by analysis of 
RNNs) (Fig. 3e,f and Extended Data Fig. 7c,d).

We wish to emphasize that the critical difference between our previ-
ous trial-based application of TDR and the current pulse-based analysis 
is merely that in the previous trial-based analysis, stimuli are described 
as two scalar numbers, namely the expected strength of location and 
frequency evidence over the entirety of a trial. That is, the analysis 
ignores the precise timing of pulses. By contrast, the pulse-based analy-
sis leverages knowledge of the precise timing of evidence presenta-
tion, a feature made possible by the pulse-based nature of our task. 
Besides that difference in how the stimulus regressors are treated, all 
other regressors are the same in the two methods; as a consequence, 
the resulting kernels are very similar across the two methods. This is 
true in particular for the choice kernels, thus leading to highly similar 
choice axes using either of the two methods, albeit the kernel-based 
method is regularized to reduce noise (see the high degree of align-
ment between the choice axes computed using either method versus 
the analytically computed line attractor direction in RNNs trained to 
perform the task, Extended Data Fig. 7e). Details of the computation 
of choice axis using the kernel-based are provided in ‘Estimating the  
choice axis’.

Finally, we note that there is a difference between the granularity 
of the neural kernels (20 ms) and the behavioural kernels (50 ms; see 
‘Behavioural logistic regression’). In the case of the neural analysis, we 
noticed that the initial pulse-triggered response was often very fast, and 
that a shorter 20-ms time bin was best suited to allow us to capture its 
shape, especially in the first time points after the pulse presentation. By 
contrast, we noticed that the logistic regression was often noisier, and 
required pooling over at least 50-ms time bins to prevent behavioural 
kernels from being too noisy. For this reason, we decided to choose 
the optimal time bin size for each method, rather than using the same 
time bin for both analyses.
Estimating the choice axis
To compute the population choice axis, we compiled the choice kernels 
across all neurons, limited to a time window during the presentation 
of the pulse train stimulus (0 to 1.3 s after stimulus start), into a matrix 
Mc that is Nneurons × Ntime bins in size. The first principal component of this 
matrix (that is, the first eigenvector of M MT

c c , after correcting for the 
mean firing rate of each neuron), is the Nneurons-long vector in neural 
space that captures the most variance across choice kernels. This vec-
tor was then taken as the choice axis. The pulse-evoked population 
responses, and their projection onto the choice axis, were computed 
by compiling pulse kernels across all N neurons recorded from the 
same rat (Extended Data Fig. 5). At each point in time, the pulse kernel 
values across all neurons are a vector Nneurons in length; this was projected 
onto the choice axis (which is a vector of the same length). We then 
studied the time evolution of the results of this projection, which we 
referred to as the ‘projection onto the choice axis of population pulse 
response kernel’.

To test whether the direction of the choice axis was different across 
the two contexts, we computed the axis for each animal twice, using 
data collected only from one context at at time (Fig. 1e and Extended 
Data Fig. 5). To assess whether the direction of the choice axes com-
puted for each context were significantly different from each other, 
for each rat we performed a random permutation test, where on each 
iteration we shuffled the context label of each trial. This label-shuffled 
data becomes the null model. We then recomputed the choice axis 
separately for trials labelled with each of the two contexts, and meas-
ured the angle between the two axes. Done across many shufflings, this 
provided us with a distribution of the angles between choice axes to 
be expected from the null model—that is, if there were no difference 
across contexts.
Estimating differential neural kernels
To study the differential evolution of pulse-evoked population 
responses across the two contexts, we computed a differential pulse 
response. For location evidence, the differential pulse response was 
defined as the difference between the projection onto the choice axis 



of the response to location pulses in the LOC context, and the response 
to location pulses in the FRQ context. For frequency evidence, the dif-
ferential pulse response was computed as the difference between the 
projection onto the choice axis of the frequency pulse response in the 
FRQ context, minus the frequency pulse response in the LOC context 
(Supplementary Fig. 1.1c).
Summarizing the shape of the neural kernels in a slope index
To quantify the shape of differential pulse responses, we computed 
a neural slope index. To obtain this, we computed the straight line 
that provided the least-square fit of the difference between the pulse  
responses across the two contexts. The slope index was defined as  
the slope of this fitting line. As a result, a slope index = 0 indicates that 
the fitting line is perfectly horizontal (that is, the difference between 
the two pulse responses is constant at all time points), a slope index >0 
indicates a rising differential response, and a slope index <0 indicates a 
decreasing differential response. Empirically we found that differential 
pulse responses only displayed positive (or zero) slope indices—that is, 
further amplifying the effect of relevant over irrelevant evidence onto 
the choice axis (Fig. 3h and Extended Data Fig. 8).

Recurrent neural networks
To validate our analyses of behaviour and neural dynamics, and to 
gather a deeper understanding of the mathematical mechanisms that 
could underlie our rats’ context-dependent behaviour, we trained RNNs 
to perform a pulse-based context-dependent evidence accumulation 
task analogous to that performed by the rats.

The activity of the N = 100 hidden units of each network (Extended 
Data Fig. 6a) was defined by the dynamical equations

̂ ̂ ̂

̂̇ ̂ ̂
W

τ g
= ⋅ +
= − + ( )

(12)
x r i
r r x

where τ is the network time constant, x̂ is the vector of activations of 
each unit, with each of its elements interpreted as roughly paralleling 
the net input current to a neuron, W is the matrix of connections 
between units, ̂i  is the external input to each unit, and g() is a point
wise nonlinearity whose output is interpreted as roughly paralleling 
the activity (firing rate) of a neuron given that neuron’s net input 
current. We used g() = tanh(), but similar results should apply with 
other standard nonlinearities.

The input i  ̂is in turn composed of several terms:

̂ W i i= + ⋅ + ⋅ + ⋅ (13)c
LOC LOC FRQ FRQi b c w w

The first term, b, represents a bias to each unit that is constant across 
time and trials. In the second term, c is a two-element-long column 
vector that encodes current context in a one-hot manner (in the LOC 

context, 




c = 1
0

, and in the FRQ context, 




= 0
1

c ). The matrix Wc is N × 2 

in size, so its first column represents an additive bias to the units in the 
LOC context while its second column represents an additive bias in the 
FRQ context. In the next two terms, the time-dependent scalars iLOC 
and iFRQ represent the momentary LOC and FRQ evidence, respectively, 
with wLOC and wFRQ representing how each of those impact the units of 
the network.

The output of the network was determined by a single output unit 
performing a linear readout of the activity of the RNN units:

w r ̂z k= ⋅ + (14)T
O O

where wO indicates the N × 1 vector of output weights assigned to each 
hidden unit and kO is a scalar representing the output bias. The choice 
of the network on a given trial was determined by the sign of z at the 
last time point (T = 1.3 s). During training and analysis, evolution of the 
network was computed in 10-ms time steps. During training, τ was set to 

10 ms, but in subsequent analyses τ was set to 100 ms, so as to replicate 
the autocorrelation timescale observed in neural data.

Training of RNNs using backpropagation. RNNs were trained using 
backpropagation through time with the Adam optimizer and imple-
mented in the Python JAX framework. The weights of the network were 
initialized using a standard normal distribution, modified according 
to the number of inputs to a unit, and then rescaled. If η is drawn from 
a standard normal distribution η ~ N(0, 1), input weights were chosen 
as η ⋅

U
1 ; recurrent weights were chosen as η ⋅

N
0.8 ; output weights were 

chosen as η ⋅
N
1 ; where U indicates the number of inputs (U = 4) and N 

indicates the number of hidden units (N = 100). All the biases of the 
network were initialized at 0. The initial conditions were also learned, 
and were also initialized randomly from a standard normal distribu
tion, with each element of the initial condition initialized as 0.1. The 
Adam parameters for training were b1 = 0.9; b2 = 0.999; epsilon = 0.1. 
The learning rate followed an exponential decay with initial step size =  
0.002, and decay factor = 0.99998. Training occurred over 120,000 
batches with a batch size of 256 trials. Using this procedure, we trained 
1,000 distinct RNNs to solve the task using different random initializa-
tions on each run (Fig. 3a). All networks learned to perform the task 
with high accuracy (see for example, Fig. 3c). All the code for training, 
analysis and engineering of RNNs is available at https://github.com/
Brody-Lab/flexible_decision_making_rnn.

Analysis of RNN mechanisms. To analyse the linear dynamics imple-
mented by each RNN to perform context-dependent evidence accumu-
lation, we first identified the fixed points of each trained network using 
a previously described optimization procedure4,59. We then linearized 
around that fixed point, as follows.

Around any given point r î ̂( , )0 0 , a first-order Taylor expansion tells 
us that the dynamics (equation (12)) will be approximated by

r r r i
r
r

r r
r
i
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⋅ ( − ) +
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where the partial derivatives are evaluated at ( , )0 0̂ ̂r i . When ( , )0 0̂ ̂r i  is a 
fixed point, r r i( , ) = 00 0̂̇ ̂ ̂ . Using equation (12), we can obtain the derivatives
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∂
∂

=

(16)

where D is a diagonal matrix that we refer to as the gain matrix, and 
whose elements are given by

̂D g x= ′( ) (17)jj j0

with g ′ being the derivative of the pointwise nonlinearity g() and ̂x j0  
being determined by the fixed point, as they are the elements of 
x r iW= ⋅ +0 0 0̂ ̂ ̂ .

Combining equation (16) with equation (15), and changing variables to

̂ ̂
̂ ̂

= −

= −
(18)

0

0

r r r

i i i

we obtain the linearized dynamics

r r r i̇τ D W D= − + ⋅ ⋅ + ⋅ (19)

In the absence of sensory evidence—that is, in the silences between 
clicks when iLOC = 0 and iFRQ = 0—the fixed points of the system will be 
determined by ̂i b cW= + ⋅c0 . The fixed points are therefore context- 
dependent, and as a consequence, the gain matrix D will also be 
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context-dependent, since it is a function of the fixed point around 
which we are linearizing (equation (17)). The context-dependence of 
D is what leads to different linearized dynamics in the two contexts.

The linearized connectivity matrix that determines the recur-
rent dynamics, D ⋅ W, depends on D; and the linearized input vector, 
D ⋅ i, also depends on D. Thus, this formulation allows both context- 
dependent modulation of the recurrent dynamics and of the input 
vector.

The discussion in Supplementary Information describes how RNN 
equations linearized in the activation space x̂, even while equivalent 
to the dynamics used here, do not allow observing context-dependent 
input modulation. This would eliminate the right and top corners of 
the barycentric coordinates of Fig. 2g. Analyses linearizing in activa-
tion space x̂ are therefore limited to describing solutions as being  
100% SVM.

For each trained RNN, we focused on the analysis of the linearized 
dynamics corresponding to the fixed point with the smallest absolute 
network output |z| (that is, where the network is closest to the decision 
boundary), but results were similar when considering different fixed 
points (that is, linearized dynamics were mostly similar across differ-
ent fixed points). Similar to previous reports4, we found that in every 
well-trained network, fixed points were roughly aligned to form a line 
attractor for each of the two contexts, and that eigendecomposition 
of the Jacobian matrix D ⋅ W reveals a single eigenvalue close to 0, and 
all other eigenvalues with a negative real value. This reflects the exist-
ence of a single stable direction of evidence accumulation (the line 
attractor), surrounded by stable dynamics.

The right eigenvector associated with the eigenvalue closest to 0 
defined the direction of the line attractor ρ, while the corresponding 
left eigenvector defined the direction of the selection vector s. For each 
network, we computed these vectors separately for the two contexts 

by setting the contextual input c as c 




= 1
0

 in the LOC context, and 

c 




= 0
1

 in the FRQ context, before computing the fixed points and the 

eigendecomposition. As a result, for each network we computed the 
line attractor in each of the two contexts, which we denote as ρLOC and 
ρFRQ, and the selection vector in each of the two contexts (sLOC and sFRQ), 
as well as the linearized input D ⋅ i in each of the two contexts (iLOC and 
iFRQ). Using these quantities, we directly computed the terms in equa-
tion (2) to quantify how much each of the three components contrib-
uted to differential pulse accumulation, and we plotted the results for 
1,000 RNNs in barycentric coordinates (Fig. 3a).

Engineering of RNNs to implement arbitrary combinations of com-
ponents. To engineer RNNs that would implement arbitrary combina-
tions of components, we started from the RNN solutions obtained from 
standard training using backpropagation through time. For a given 
trained network, we first computed the fixed points of the network and 
the linearized network dynamics, and we identified the line attractor, 
selection vector and effective input across the two contexts (see above). 
Because the RNN dynamics are known (equations (12) and (13)), the 
linearized dynamics can be expressed in closed form as a function of 
the network weights:

M
F

r
w w r w c k=

∂
= tanh′( ⋅ + ⋅ + ) (20)j

j
j

CR R fixed⊙

i
F
u

w w r w c k=
∂
∂

= tanh′( ⋅ + ⋅ + ) (21)u CR fixed⊙

where Mj indicates the jth column of the Jacobian matrix, w j
R  indicates 

the jth column of the matrix of recurrent weights, rfixed indicates the 
network activity at the fixed point, tanh′ indicates the first derivative 
of the hyperbolic tangent nonlinearity, and ⊙ indicates the Hadamard 

product or element-wise multiplication, where the elements of two 
vectors are multiplied element-by-element to produce a vector of the 
same size. We further define the saturation factor for each of the two 
contexts as:

w r w c ksat = tanh′( ⋅ + ⋅ + ) (22)CLOC R fixed,LOC LOC

w r w c ksat = tanh′( ⋅ + ⋅ + ) (23)CFRQ R fixed,FRQ FRQ

where rfixed,LOC indicates the fixed point with the smallest absolute net-
work output in the LOC context, rfixed,FRQ indicates the fixed point with 
the smallest absolute network output in the FRQ context, cLOC indicates 
the context input in the LOC context (1, 0), and cFRQ indicates the context 
input in the FRQ context (0, 1). The effective input for the two contexts 
can therefore be computed as:

⊙ ⊙i w i w= sat = sat (24)u uLOC LOC FRQ FRQ

The three components of context-dependent differential integration 
defined in equation (2) can therefore be rewritten as a function of the 
input weights wu. The SVM, which is equal to the dot product between 
the difference in the selection vector and the average effective input, 
can be rewritten as:

⊙

⊙ ⊙

s i s
i i

s w

s w w s

∆ ⋅ = ∆ ⋅
+
2

= ∆ ⋅
sat + sat

2
=

= ∆ ⋅ sat = ⋅ (∆ sat)
(25)u

u u

LOC FRQ LOC FRQ

where sat indicates the average saturation factor across contexts, and 
the last step takes advantage of the associative property of the Had-
amard and dot product. The DIM, which is equal to the dot product 
between the difference in the effective input and the line attractor, can 
be rewritten as:

⊙

⊙ ⊙
i ρ i i ρ w ρ

w ρ w ρ

∆ ⋅ = ( − ) ⋅ = (sat − sat ) ⋅

= ∆sat ⋅ = ⋅ (∆sat )
(26)

u

u u

LOC FRQ LOC FRQ

where Δsat indicates the difference between the saturation factor 
across the two contexts. The IIM, which is equal to the dot product 
between the difference in the effective input and the average selection 
vector orthogonal to the line attractor s, can be rewritten as:

⊙

⊙ ⊙
i s i i s w s

w s w s

∆ ⋅ = ( − ) ⋅ = (sat − sat ) ⋅

= ∆sat ⋅ = ⋅ (∆sat )
(27)
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� LOC FRQ � LOC FRQ �
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Knowledge of equations (21), (22) and (23) allows us to identify input 
vectors that produce network dynamics relying on any arbitrary com-
binations of the three components. For example, producing a network 
using exclusively SVM requires the first component (equation (21)) to 
be large, while the second (equation (22)) and third (equation (23)) 
components must be 0. In other words, the input weights wu must 
satisfy:

w s

w ρ

w s

⋅ (∆ sat) > 0

⋅ (∆sat ) = 0

⋅ (∆sat ) = 0

(28)
u

u

u �

⊙
⊙
⊙

In addition, we must also require that the network does not accu-
mulate the pulse in the irrelevant context. Because we are conducting 
this analysis for pulses of location evidence, this means that the dot 
product between the effective input and the selection vector in the 
FRQ context should be 0:

i s i s w s

w s

⋅ = 0 ⋅ = sat ⋅ =

= ⋅ (sat ) = 0
(29)

u

u

FRQ FRQ FRQ FRQ FRQ FRQ

FRQ FRQ

⇒ ⊙

⊙



Finally, we then use the Gram-Schmidt process to find the set of 
weight wu maximally aligned to the vector s∆ sat⊙ , and orthogonal 
to vectors ⊙ ρ∆sat , ⊙ s∆sat � and satFRQ ⊙ sFRQ. Similar considerations 
can be applied to produce networks using different mechanisms. For 
example, to engineer a network that uses only DIM the input weight 
must be maximally aligned to ⊙ ρ∆sat  and orthogonal to s∆ sat⊙ , 

⊙ s∆sat � and satFRQ ⊙ sFRQ. Engineering networks implementing com
binations of mechanisms can be obtained by choosing the input  
vector as a linear combination between extreme network solutions. 
Finally, we emphasize that the mechanism chosen for one stimulus 
feature (for example, location) is entirely independent from the 
mechanism chosen for the other stimulus feature (for example,  
frequency).

Statistical methods
Comparison of the strength of the encoding of relevant versus irrel-
evant information (Fig. 1f,g) was performed by quantifying the vari-
ability across responses to different stimulus strengths, normalized by 
trial-by-trial variability, limiting the analysis to the subspace orthogonal 
to choice encoding. Error bars for neural and behavioural kernels were 
computed using bootstrapping. On each iteration of the bootstrap 
procedure, we randomly resampled trials, with replacement, and we 
computed the standard error as the standard deviation of the boot-
strapped values over 100 iterations.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Rat behavioural and electrophysiological data are available at https://
github.com/Brody-Lab/flexible_decision_making_rats. Modelling 
data are available at https://github.com/Brody-Lab/flexible_decision_ 
making_rnn.

Code availability
The code to train rats is available at https://github.com/Brody-Lab/
flexible_decision_making_training. All the code for training, analysis 
and engineering of RNNs is available at https://github.com/Brody-Lab/
flexible_decision_making_rnn.
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Extended Data Fig. 1 | Comparison of rat task and monkey task. a) In the rat 
task, the subject is cued using an audiovisual stimulus, and is presented with a 
train of randomly-timed auditory pulses varying in location and frequency.  
In different contexts, the subject determines the prevalent location or the 
prevalent frequency of the pulses. b) Stimulus set for the rat task: strength of 
location and prevalent frequency are varied independently on each trial.  
c) Psychometric curves for the rat task (n = 20 rats). d) In the monkey task, the 
subject is cued using the shape and color of a fixation dot, and is presented  
with a field of randomly-moving red and green dots. In different contexts, the 

subject determines the prevalent color or the prevalent motion of the dots.  
e) Stimulus set for the monkey task: strength of motion and prevalent color are 
varied independently on each trial. f) Psychometric curves for the monkey task 
(n = 2 macaque monkeys). g) Rats rapidly switch between contexts. Performances 
saturate within the first 4-5 trials in the block. The weight of location and 
frequency evidence is computed using a logistic regression (see methods). 
Thin lines indicate individual rats, thick lines indicate the average across rats. 
h) Full matrix of behavioral performances for one example rat across the two 
contexts.



Extended Data Fig. 2 | Training procedure. a) Stage 1: rats are trained only on 
the location task, with strong location evidence and no frequency evidence 
(pulses consist of superimposed low and high frequency). The context cue is 
played before each trial. b) Stage 2: rats learn to alternate between the location 
and frequency context. In the frequency context rats are presented with strong 
frequency evidence and no location evidence (stereo pulses). c) Stage 3: 
introduction of pulse modulation. In the frequency context, pulses are now 
presented on either side (but with no prevalent side). In the location context, 
pulses are either high-frequency or low-frequency (but with no prevalent 
frequency). d) Stage 4: irrelevant information is introduced, but the relevant 

information is always at maximum strength. e) Stage 5: relevant information 
can have intermediate strength. f) Stage 6: relevant information can have low 
strength. g) Training progression. Most rats learn stages 1-3 in approximately  
2 weeks, but it takes a much longer time to learn stages 4-6 because of the 
introduction of irrelevant evidence. The feature selection index quantifies 
whether rats attend to the correct feature and ignore the irrelevant feature  
(see methods). The black dashed line indicates chance, the red dashed line 
indicates the threshold performance to consider a rat trained. Most rats learn 
the task within 2-5 months.
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Extended Data Fig. 3 | Behavioral data for all rats. Rat ID color indicates 
whether rat was used for electrophysiology (red), optogenetics (cyan) or only 
for behavior (black). a) Psychometric curves for frequency evidence, measuring 
the fraction of right choices as a function of strength of frequency evidence  
(6 levels of strength, see Fig. 1b). Green indicates frequency context (relevant), 
purple indicates location context (irrelevant). b) Weights for frequency evidence 
computed using the behavioral logistic regression for each rat (see Fig. 1d); 
colors as in panel a. c) Differential behavioral kernel for frequency evidence 
across all rats. d) Psychometric curves for location evidence, measuring the 
fraction of right choices as a function of strength of location evidence (6 levels 
of strength, see Fig. 1b). Green indicates location context (relevant), purple 

indicates frequency context (irrelevant). e) Weights for location evidence 
computed using the behavioral logistic regression for each rat (see Fig. 1d); 
colors as in panel d. f) Differential behavioral kernel for location evidence across 
all rats. Shaded areas indicate bootstrapped standard errors. g) The slope 
index computed from behavioral trials in the first half split is highly correlated 
with the slope index computed using the second half split (r = 0.58; p = 0.000013). 
The significance of the correlation was computed using the Student’s t 
distribution. h) Psychometric curves can be predicted with high precision from 
the weights of the logistic regression. Data are shown from the seven rats used 
for electrophysiology recordings.



Extended Data Fig. 4 | Electrophysiology and optogenetics techniques.  
a) 64-channel custom-made multi-tetrode drive, allowing independent 
movement of 16 tetrodes. This drive was used in one rat for wired recordings.  
b) 128-channel custom-made multi-tetrode drive, allowing independent 
movement of 4 bundles with 8 tetrodes each. This drive was used in six rats for 
wireless recordings. c) Device for wireless optogenetic perturbation. In the 
implant, two chemically sharpened optic fibers targeting both hemispheres 
are attached using optical glue to two laser diodes. The laser diodes are 
controlled independently by a control board, which communicates wirelessly 
with the computer controlling the behavior. The control board can be attached/ 
detached using a microUSB connector. d) Example rat with wireless 
electrophysiology implant and headstage. e) Example rat with wireless 
optogenetic implant and control board. f,g) Result of inactivation of FOF. 3 rats 
expressed AAV2/5-mDlx-ChR2-mCherry and were stimulated with blue light 

(450 nm, 25mW) for the full duration of the stimulus. f) Result of unilateral 
inactivation on rats’ choices as a function of strength of relevant evidence 
(averaged across the two contexts). Activation of each laser was randomized 
across trials. g) Result of bilateral FOF inactivation on rats’ choices as a function 
of strength of relevant evidence (averaged across the two contexts). h,i) Example 
responses of single units recorded in FOF (h) and in mPFC (i). Shown are the peri- 
stimulus time histograms of responses for correct trials, averaged according to 
context and choice. Units in both areas exhibit significant heterogeneity and 
large modulation according to combinations of the rat’s upcoming choice and 
the current context. The dashed vertical lines indicate the beginning of the 
pulse-train stimulus presentation, the end of the pulse-train stimulus presentation, 
and the average time when the rat performed a poke in one of the two side ports 
to indicate his choice. Shaded areas indicate standard errors.
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Extended Data Fig. 5 | Choice-related dynamics, computed independently 
for each rat, and across the two contexts. For each rat, the horizontal and 
vertical axes in the two subpanels are the same across the two panels, and are 
computed using data from both contexts. In panels a-g, the dynamics in each 
context are computed using the choice kernels of the pulse-based regression 
(see Fig. 1.1 in Extended Discussion). The kernels provide a regularized, 

noise-reduced version of the raw trajectories (which are shown for Rat 1 in panel h). 
The black dot indicates the time of the start of stimulus presentation (t = 0),  
the purple dots indicate the end of stimulus presentation (t = 1.3s). The line 
indicates the choice axis computed in the given context, and above the panels 
is indicated the angle between the choice axes computed across the two contexts.



Extended Data Fig. 6 | Engineered recurrent neural networks (RNNs) across 
the entire solution space (Fig. 2g) all qualitatively reproduce rat TDR 
trial-based dynamics, but are distinguished by pulse-based analysis.  
a) Architecture of the RNNs. (b) TDR analysis (orange frame) and pulse-based 
analysis (purple frame) applied to RNNs generated to span different points 
within the solution space, as indicated by the RNN symbol on the barycentric 
coordinates. The TDR analysis and the pulse-based analysis of one RNN at each 
position are shown, connected to their RNN position by the arrow. For the 

position at the very center of the triangle, three different RNNs at that position, 
trained by starting from different random initial weights, are shown. All RNNs 
qualitatively reproduce rat TDR trial-based dynamics. The variability of trial- 
based TDR seen across RNNs is not predictive of the position within the solution 
space, and even RNNs generated from the same point can produce variable TDR 
trajectories. In contrast, the estimated pulse-triggered response reliably indicates 
the position of RNNs along the vertical axis of the solution space.
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Extended Data Fig. 7 | Validation of pulse regression method. a) Example 
application of the pulse regression to one example recorded unit. (b) Fraction 
of explained variance as a function of firing rate across all recorded units.  
(c,d) The pulse-regression kernels provide an accurate estimate of the response 
to a single isolated pulse. In (c) are shown the responses to a single isolated 
pulse of either location or frequency evidence in both contexts for an example 
RNN unit. In (d) are shown the estimates of these pulses from the dynamics of 
the RNN solving the task with regular trials featuring many consecutive pulses 
presented at 40 Hz. (e) Comparison of the direction of the true line attractor 
(computed by finding the RNN’s fixed points, see methods) with the choice axis 
estimated by the trial-based regression (Fig. 1f,g) and the pulse-based regression 
(Fig. 3). The choice axis closely approximates the direction of the true line 

attractor. (f) Kernels estimated using the assumption of gaussian noise closely 
approximate those estimated using the assumption of Poisson noise. Kernels 
are shown here for one example neuron. (g) Prediction accuracy does not 
improve when two separate kernels are computed for the early portion of the 
stimulus and the late portion of the stimulus. Here is shown the improvement  
in cross-validated prediction accuracy across all recorded neurons when using 
two separate kernels as compared to using a single kernel throughout the 
stimulus. The significance was evaluated using a two-tailed paired-sample 
t-test (p > 0.1). (h) Population pulse responses for two example rats, and 
corresponding differential pulse-triggered kernels for the 10 individual neurons 
with largest contributions to the choice axis.



Extended Data Fig. 8 | Differential pulse responses and behavioral  
kernels. a) Differential pulse responses across the RNNs shown in Fig. 5c. The 
number above each behavioral kernel indicates the fraction of direct input 
modulation for the associated RNN (same notation as in Extended Data Fig. 6). 
(b) Corresponding behavioral kernel for each RNN. (c) Differential pulse responses 

across all rats shown in Fig. 5d (n = 7 rats, two features per rat). Gray indicates 
location feature, blue indicates frequency feature. (d) Corresponding behavioral 
kernels for each rat and feature. Shaded areas indicate bootstrapped standard 
errors.
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Extended Data Fig. 9 | Three distinct “languages” can capture the three 
fundamental solutions to the task. a) “Linear algebra language”. As derived  
in the main text in Equations 1 and 2, the overall differential integration can be 
expressed as a sum of three terms. (b) “Network dynamics language”. The three 
solutions are associated with distinct pulse-evoked dynamics within the space 
spanned by the line attractor and the selection vector. (c) “Circuit dynamics 
language”. The three solutions are associated with three different latent circuit 
structures. To show this, we first note that our derivation of task solutions stems 
from focusing on linearized dynamics around fixed points of a line attractor 
(Fig. 2c). These linearized dynamics can be interpreted as an equivalent linear 
circuit whose synaptic connectivity matrix is defined by the state transition 
matrix (i.e. matrix M in Equation (1)). This circuit can be further simplified into  
a feedforward circuit using the Schur transformation (Goldman, 2009), which 

operates a change of coordinates to transform the state transition into an 
upper triangular form. In the resulting circuit, the first node represents the 
accumulator (i.e. the line attractor), and it receives feed-forward inputs from 
the other nodes of the circuit. Our three solutions can be interpreted as three 
different ways to modulate the connectivity of this circuit across the two contexts. 
In the case of “direct input modulation”, it is the input to the accumulator node 
that varies across contexts. In the case of “indirect input modulation”, it is the 
input to the other nodes that changes across contexts, and this differential 
input eventually reaches the accumulator through the feed-forward connections. 
Finally, in the case of “selection vector modulation”, the input to all nodes stays 
the same across contexts, but the feed-forward connections between the other 
nodes and the accumulator node change across contexts.



Extended Data Fig. 10 | Extension of the theory to the general case with 
context-dependent line attractors. a) Rewriting of the equation describing 
the differential integration of a pulse across contexts (Equation 1) after the 
assumption that the line attractor is parallel across the two contexts is dropped. 
In this equation, the first three terms correspond to the same terms as in 
Equation 2, with addition of a fourth term, which captures changes in the 
direction of the line attractor along the average input direction. (b) Graphical 

intuition of the four solutions in the general case where the line attractor is not 
parallel across the two contexts. Top left: changes of the input along the direction 
of the line attractor (“direct input modulation”). Top right: changes of the input 
along a direction orthogonal to the line attractor (“indirect input modulation”). 
Bottom left: changes of the direction of the line attractor across the two contexts. 
Bottom right: changes of the component of the selection vector orthogonal to 
the line attractor across contexts (“selection vector modulation”).
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